## SoLID magnet modeling

Jay Benesch March 2017

# Outline

- Model variations examined
- Trade-offs noted as a result
- Plots comparing long, larger aperture, less steel model with long, smaller aperture, more steel model
- Plots showing a "less steel" model with notch for LGC
- Questions for collaboration
- For many more details, see three documents linked at https://solid.jlab.org/cgi-bin/private/ShowDocument?docid=2 and the later ones I've added to the docdb.

# Model variations examined

- SIDIS acceptance angles 2, 7 vs 8 (endcap cone), 14.7, 24 vs 25 (entrance plug)
- Endcap internal cylinder 85 cm R or 90 cm R
- PVDIS acceptance angles 3.5, 22, 35 degrees
- Endcap length 261 cm vs 304.8 cm
- All models have 14" downstream coil collar, minimum per W. Seay
- 15.24 cm (6") vs 16 cm (6.3") endcap walls
- Upstream plug either solid or made of twenty 3 cm steel, 1 cm air groupings.

## Largest acceptance model



All angle options shown

## Trade-offs noted

- 24 vs 25 degree input angle has modest affect on stray field excursion achievable over 60 cm He3 target, 1.91 G vs 2.16 G
- 85 cm R change to 90 cm R of inner endcap feature requires ~ 4 cm increase in thickness of upstream plug (24 degrees). He3 stray field excursion 1.63 G and correction coil solenoid amp-turns -27% from 9.72 kAT above.
- 90 cm R inner cylinder also reduces field within endcap but not enough to eliminate need for PMT shields.
- Service turrett cut-out produces transverse torques < 100 kN-cm in models with varying mesh choices. Eight radial supports at 5 kgf each so capacity at least a factor of four above requirement.
- Adjusting upstream plug thickness at mm level allows longitudinal force on coil to be set to 1% of available longitudinal load capacity.

### Bmod for less (top) and more steel cases



### UNITS

Length cm Magn Flux Density gauss Magnetic Field oersted Magn Scalar Pot oersted cm Current Density A/cm<sup>2</sup> Power w Force Ν

### MODEL DATA

solidXL\_try9\_dense\_V18R2.op3 Magnetostatic (TOSCA) Nonlinear materials Simulation No 2 of 2 10125132 elements 14436695 nodes 4 conductors Nodally interpolated fields Activated in global coordinates 8-fold rotational symmetry

Field Point Local Coordinates Local = Global

### UNITS

Length cm Magn Flux Density gauss Magnetic Field oersted Magn Scalar Pot oersted cm Current Density A/cm<sup>2</sup> w Power Force Ν

### MODEL DATA

solidXLC\_try201\_dense\_V18R2.op3 Magnetostatic (TOSCA) Nonlinear materials Simulation No 1 of 1 10295672 elements 14671155 nodes 6 conductors Nodally interpolated fields Activated in global coordinates 8-fold rotational symmetry

Field Point Local Coordinates Local = Global



## Bmod for model with LGC notch



UNITS Length

Length cm Magn Flux Density gauss Magnetic Field oersted Magn Scalar Pot oersted cm Current Density A/cm<sup>2</sup> Power W Force N

### MODEL DATA

solidXL\_try9\_LGC\_try3\_V18R2.op3 Magnetostatic (TOSCA) Nonlinear materials Simulation No 1 of 1 10283051 elements 14625221 nodes 4 conductors Nodally interpolated fields Activated in global coordinates 8-fold rotational symmetry

Field Point Local Coordinates Local = Global

"less steel" model: larger acceptances, 85 cm downstream radius steel, notch Z=[209.55, 224.79] R=[222,270]

## LGC, HGC PMT locations



### UNITS Length cm Magn Flux Density gauss Magnetic Field oersted cm Magn Scalar Pot oersted cm Current Density A/cm<sup>2</sup> Power W Force N

### MODEL DATA

solidXL\_try9\_LGC\_try3\_V18R2.op3 Magnetostatic (TOSCA) Nonlinear materials Simulation No 1 of 1 10283051 elements 14625221 nodes 4 conductors Nodally interpolated fields Activated in global coordinates 8-fold rotational symmetry

### Field Point Local Coordinates Local = Global

FIELD EVALUATIONS

### UNITS

Length cm Magn Flux Density gauss Magnetic Field oersted Magn Scalar Pot oersted cm Current Density A/cm<sup>2</sup> Power W Force N

### MODEL DATA

solidXL\_try9\_LGC\_try3\_V18R2.op3 Magnetostatic (TOSCA) Nonlinear materials Simulation No 1 of 1 10283051 elements 14625221 nodes 4 conductors Nodally interpolated fields Activated in global coordinates 8-fold rotational symmetry

### **Field Point Local Coordinates**

Local = Global

### FIELD EVALUATIONS Cartesian CARTESIAN 20x2

| artesian | CARTESIAN | 20X20      | Cartesian    |
|----------|-----------|------------|--------------|
|          | (nodal)   |            |              |
|          | x=0.0     | y=230.0 to | o z=315.0 to |
|          |           | 250.0      | 335.0        |
|          |           |            |              |

### External stray fields under 6 G



Cartesian

(nodal) x=0.0

## If ECAL wants yet lower fields behind endcap



Use three of 14" outer muon plates for back wall of endcap. 4.2G max Only 15% reduction from 32 cm (12.6") back wall, but they are free.

## Field in vicinity of He3 target



Black line: more steel case with 87.5  $A/cm^2$  in 9 cm square correction solenoid Green line: less steel case with 120  $A/cm^2$ . Red line: less steel with 115  $A/cm^2$  Lines may be shifted on vertical (Bz) axis by use of Bz Helmholtz pair of target

# Questions for collaboration

- how long should endcap be, including contingency for detector changes?
- what should OD of endcap central cylinder be? Range 85-90 cm. Max that detector mounts allow under 90?
- what size radial holes are needed at what endcap R, Z locations for cables?
- how much will 2 G excursion in Bz over 60 cm He3 target affect it?
- reuse outer muon steel for back of endcap or save it for muon detectors?