Director's Review suggestions Baffle Materials Activation Radiation on Coil Radiation in the Hall Change of SoLID configurations

SOLID

Radiation and Activation with SoLID

Outline

Director's Review suggestions **Baffle Materials** Activation Radiation on Coil Radiation in the Hall Change of SoLID configurations Another SoLID configuration (J/Ψ) Estimated cost

Lorenzo Zana The University of Edinburgh March 5, 2017

1000

Areas of further investigation

- Baffle material optimization
- More detailed study on radiation on magnet's coil
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels
- Complete different configurations for SoLID

Director's Review suggestions Baffle Materials Activation Radiation on Coil Radiation in the Hall Change of SoLID configurations

Baffle: Different Material Activation

Baffle: Different Material Activation

Baffle's material Activation

- Different material were tested for the first 3 layers of baffle/shielding
- At this presentation just shown the first baffle, but material dependence is comparable also for the other baffles analyzed
- Copper shows a longer decaying time for the activated isotopes (after 1month radiation is i 1 order of magnitude respect to Lead and Tungsten)
- If Copper is chosen some shielding enclosure will be needed to be placed for dispose of the baffle.

Areas of further investigation

- Baffle material optimization (more detail here)V
- More detailed study on radiation on magnet's coil
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels

< □ > < @ > < E > < E > E の < € / 5/21

Complete different configurations for SoLID

Updated Coil design to CLEO

The PVDIS configuration with Deuterium target present the main source for neutron fluxes on the coils

・ロト ・ @ ト ・ E ト ・ E ・ ク へ · 6/21

Areas of further investigation

- Baffle material optimization (more detail here) V
- More detailed study on radiation on magnet's coil (more detail here) V
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels
- Complete different configurations for SoLID

Radiation Estimates and Tolerance

Radiation Estimates

Tolerance (guideline)

© Lockheed Martin

< □ > < @ > < E > < E > E の < ○ 11/21

More detail on Radiation in the Hall

Updating design

- Outside the beamline enclosure (2m) accumulated radiation dose should be below the $10^{13} \left(\frac{1MeVNeutron}{cm^2}\right)$
- At this level of accumulated radiation no expected damage is expected to detectors

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ڲ · ⑦ Q ℃ 12/21

Areas of further investigation

- Baffle material optimization (more detail here) V
- More detailed study on radiation on magnet's coil (more detail here) V
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present (more detail here) V
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels
- Complete different configurations for SoLID

Change of SoLID configurations

Considering just radiation level issues

The PVDIS configuration with Deuterium target presents strong activation on the first baffle

Change of SoLID config: baffle activation for PVDIS

Goal for activation $\Rightarrow < 10 mrem/h$

Gamma Spectrum after 1day

\sim 8cm of Lead for goal

- factor of ~ 20 reduction
- (Real baffle has 50% of this activation)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - 釣�� 15/21

Areas of further investigation

- Baffle material optimization (more detail here) V
- More detailed study on radiation on magnet's coil (more detail here) V
- More detailed on impact of radiation in the Hall with focus on areas where electronics will be present (more detail here) V
- Planning on how to change from one SoLID configuration to another: Better understanding of effort involved and potential issues on radiation levels (more detail here) V
- Complete different configurations for SoLID (shown here)

Another SoLID configuration (J/Ψ)

From all APPROVED configurations

 J/Ψ configuration test was still missing:

- Approved for 50+10 days (physics+chekcs)
- 3µA beam at 11GeV
- 15 cm Liquid Hydrogen target

Detector planes layout

FLUKA can show flux on surfaces

Extra surfaces have been added in post-production to highlight the fluxes at different location

- Extra surfaces have been added to highlight the fluxes at different location
- Material is the same as surrounding at running time (AIR)
- Material is switched to physical material so that the flux is shown

Director's Review suggestions Baffle Materials Activation Radiation on Coil Radiation in the Hall Change of SoLID configurations

Radiation in the Hall (J/Ψ)

Accumulated fluence in the Hall

Accumulated $\left(\frac{1MeV_{eq}Neutron}{cm^2}\right)$ for 60 days, $3\mu A$ beam at 11GeV • $10^{13} \left(\frac{1MeVNeutron}{cm^2}\right)$ as goal for safety • Radiation in the Hall seems well under control

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ڲ · ⑦ < ℃ 19/21</p>

Radiation inside the Solenoid (J/Ψ)

Accumulated fluence in the Hall

Accumulated $\left(\frac{1MeV_{eq}Neutron}{cm^2}\right)$ for 60 days, $3\mu A$ beam at 11GeV • The GEM readout system was developed to sustain $2.4 \times 10^{14} \left(\frac{1MeVNeutron}{cm^2}\right)$

• Radiation is well below the threshold for the electronics

□ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ のへで 20/21

Estimated cost of shielding

Choice for shielding

- Polyethylene
- Borated Polyethylene (2.4 times more expensive): Estimated %10 more effective on open fluxes, but more important in a close environment like PVDIS.

Estimated price for material for PVDIS (3.5 million cm^3 before cutting to shape)

- Polyethylene (\$13300)
- Borated Polyethylene (2.4 times more expensive) (\$32000)

Director's Review suggestions Baffle Materials Activation Radiation on Coil Radiation in the Hall Change of SoLID configurations

Conclusions

<□ > < @ > < E > < E > E の < ? 22/21