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SoLID MRPC
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Figure 108: The structure of the MRPC prototype
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Multi-gap Resistive Plate
Chamber (MRPC) serves as
TOF (pion/kaon

separation)

Specifications from the
PCDR design (10 gas gaps
with each 0.25mm width,
0.7 mm of glass plates)

gas mixture: C,F,H, (90%) :
SF¢ (5%) :iso-C,H,, (5%)
Operating HV: 6.6 kV (E =
106kV/cm)



Fast digitization software for MRPC

Digitization
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< Basic scheme >

Primary ionization (G4)

Detector response

[
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Avalanche simulation

Characterized by the minimum
ionization energy.

lonization and attachment, drift

velocity, ...
(currently using the parameters

from the BESIII MRPC using
MAGBOLTZ)
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Induced signal current
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Time conversion

Ramo’s theorem
i(t)y=E_-v-e, N(t)



Primary lonization

* Primary ionization: N_ion=E_dep / E_ion . s
— N_ion: # of primary E-ion pairs it 188

— E_dep: energy deposit (Geant4)

— E_ion: minimum ionization energy (setto ¢4

20 eV) C

* Assume Poisson distribution with a mean of
(E_dep/E_ion)

 Random distribution of electrons from primary e
ionization along the gas gap.
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Avalanche simulation

Starting with 1-D model (Nucl. Instrum. Meth. A 500
(1-3) (2003) 144)

Avalanche development can be characterized by two
coefficient: Townsend coefficient (a) and attachment

coefficient (n)

P(n,x): probability for an avalanche started with a
single electron to contain n electrons after distance x

General solution is given as:
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Avalanche simulation

* Single gap avalanche simulation
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Figure 108: The structure of the MRPC prototype By Fenfen An (using MAG BOLTZ)
* Divide the gas gap into N steps
e For each step dx, calculate the number of [
electrons with a probability for g " TowmsendCoficn
ionization/attachment 2 .,
* Loop over all electrons until they reach to S | \\\
the end of the gap ‘ ]
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Avalanche simulation

* Oncen>>1, it becomes a very time consuming
process.
* Apply an effective model once n becomes large

— Central limit theorem: # of electrons at x+dx can be
obtained by drawing a random number from a Gaussian
with mean and sigma of

— Switch to the effective model if n > 200

e Space charge effect:

— Exponential avalanche growth stopped by space charge
effect

— Set a limit (simplified space charge effect): 1.5e7



Avalanche simulation test

* Avalanche by a single electron in a single gap

From the NIM paper
(a=13/mm, n =3.5/mm)
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Fig. 6. Avalanches started by a single electron at x = 0 for o =

13/mm, 5 = 3.5/mm. We see that the very beginning of the

avalanche decides on the final avalanche size. Once the number
of electrons is sufficiently large the avalanche grows like e,
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Using our simulation module

Avalanche size vs Distance
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Different step size
difference in the early avalanche
- decides final avalanche size



Avalanche simulation
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< SoLID MRPC operating condition > e Used the same random
- E =108 kV/cm seed for the comparison.

- Townsend coefficient (o) = 129/mm o Only minor difference in

- Attachment coefficient (n) = 5.435/mm the avalanche size between

- Drift velocity = 0.201 mm/ns the general solution and
the effective model.

Mar. 6, 2017



Induced signal

* |Induced signal calculated by Ramo’s theorem

 Weighting field is calculated with # of gaps, gas gap
and glass plate width, permittivity of resistive plate

Induced - orift veloclty g ¢ Glass permittivity
current: i(t) =®' v-e, N(t) E, = -
| (n+1)b+nde, neeseeps

b: thickness of a glass plate

Weighting field

200 MeV electron MC d: gas gap width
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Cosmic data analysis

 Compare the MC output with real data: xcheck and tuning of MC
 Cosmicray data @ Tsinghua Univ. for various HV settings.

* Analyzing data with HV = 6.6kV

* Need to do further analysis
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Muon simulation

* Shooting 1, 3, 5 GeV muons to a fixed position (no shift
included)

* |Induced charge peak at ~1.78 pC
* Leading time (Q,4 > Qiresholq) - Charge correlation
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Summary

Short term:
— Cosmic test result - MC comparison
— Implement readout configuration to MC (QDC, TDC output)
— Correction, calibration, .. Input from data to MC
— Efficiency, time resolution

Long term improvement:

Space charge effect:
— Consider both radial and longitudinal directions
— Dynamically calculate E field and gas parameters

Garfield + Geant4:
— Making use of the existing module from SBU TPC simulation.



Backup



MRPC operating principle

Cathode pickup
electrodes

. Anode pickup
: electrode

Differential signal to
front-end electronics

T

* Charged particle ionizes the gas and electrons are multiplied by the
high E field (avalanche)

* Internal resistive plates are electrically floating

* Resistive plate is transparent to the fast induced signal on the
electrode

* Multi-gap = narrow gas gap, good time resolution
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Readout

e Readout at both end
of the strip

* Need to implement
the readout to MC
— resolution
— Strip identification

— Charge sharing?
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