
SoLID Simulation & Reconstruction Software

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting
June 30, 2017

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 1 / 31

SoLID Data Parameters

Experiment Event size Trigger rate Data rate Raw data
(kB) (kHz) (MB/s) (PB)

SIDIS 3 100 300 5.6
PVDIS 50 20 1,000 HLT→ 300 7.0

cf. GlueX 15 200 3,000 HLT→ 300 3.2/yr

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 2 / 31

SoLID in Context

Computing requirements comparable to Hall B & D’s
I “Solved Problem” by the time SoLID runs
I No truly new requirements on software. Hall B/D’s software would do,

as well as anything else similarly designed

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 3 / 31

Processing Petabyte-Size Data Sets

Physics software aspects
I File format must scale → proven solution: ROOT
I Parallelization/multi-threading desirable, especially for on-site

datacenter processing (our “farm”)
IT infrastructure factors

I Data access speed matters greatly → tape, disk, file system, network
I Must have enough CPUs → $$$
I Carefully choose computing model

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 4 / 31

Computing Model: Distributed, Cloud, Grid, Cray, etc.

Distributed (cluster) computing and grid/cloud-friendliness
increasingly important to provide “elasticity” for peak demands

I Does not usually require specially written sim/reco software
I “Super-framework” (scheduler, orchestrator) for distribution
I Deployment tools for grid/cloud
I Grid/cloud unrealistic for reconstruction (network is bottleneck),

though this could change

Simulation & Reconstruction software does not generally run on
supercomputers. Theory codes do (including event generators).
Requires specially written code.

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 5 / 31

Physics Software and Computing Models

Databases

Algorithms Data	Objects

Configu-
ration

Framework

Scheduler

Physics

IT

OSG
AWS

Job	Export

WAN

LAN

Local Cluster

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 6 / 31

Software Components We Need
Component Main	subcomponents Packages	/	Starting	points Time required

Databases • Geometry
• Conditions	/	Calibrations
• Run	information,	run	list

• TGeo,	(DD4hep?),	GDML
• CCDB	(Hall	B/D)
• (RCDB?)	(Hall	B)

Moderate

Data	model /	
structures

• Digits,	Hits,	Clusters
• Track	candidates,	Tracks
• Particles

• Hall	B/D
• other	large	experiments

Low

Algorithms • Event	Generators	✎
• Digitization	✎
• Cluster	finding
• Track	finding	/	fitting	✎
• PID

• Std MC	generators	(Pythia	etc.)
• Existing	KF	codes	(various)
• Genfit (track	fitting)
• Hall	B/D

Very	High

Decoder • EVIO	interface
• Event	reassembly
• Pipelined	electronics	processors
• Mapping	tables	/	database

• Hall	A/C	decoder
• DAQ	group
• Other	halls?

Moderate

Event	display • Desktop	viewer
• (Web	viewer)

TEve (ROOT) Low	/	Moderate	
(exists)

Object	I/O TFile /	TTree (ROOT) Low	(exists)

Processing	
Framework

• APIs	(algorithms,	data,	services)
• Job	configuration
• Event	loop
• Parallelization	(event/task	level)

Various	(see	later) Low	(if	reusing)

High	(if	custom)

Software	
management

• Repository	✓
• Bug	tracker	✓
• Build	system,	platform	support
• Packaging

• GitHub
• Redmine
• CMake
• RPM,	(Spack ?)

Low

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 7 / 31

Software Effort Estimate
https://hallaweb.jlab.org/12GeV/SoLID/download/doc/Estimated_SoLID_Offline_Effort.xlsx

25% contingency
75% “developer efficiency”

Total: 977 FTE-weeks!

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 8 / 31

https://hallaweb.jlab.org/12GeV/SoLID/download/doc/Estimated_ SoLID_Offline_Effort.xlsx

Comparison with GlueX Software Effort Estimate

Task Group Labor estimate Main reasons for difference w/GlueX
(FTE-weeks)

GlueX SoLID

Simulation 192 240 Simulation to be integrated in frame-
work.

Reconstruction 787 355 Adoption of an existing framework.
Smaller number of subsystems. Re-
use of algorithms.

Calibration 275 104 Smaller number of subsystems.
Production 275 155 Standard data format. Re-use of JLab

workflow tools.
Analysis 275 100 No PWA analysis and no grid imple-

mentation of analysis.
Data Challenges 62 23 No PWA data challenge.

Totals 1866 977 = 22 FTE-years

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 9 / 31

Available FTEs

22 FTE-years = 4 developers working full time for 5.5 years
I Imperative to start NOW!

Currently have 4–5 users/staff working at ≤ 50% = ≤ 2 FTEs
I Severe FTE shortage
I Try to improve: tap collaborators, get funds for new hires . . .
I Reuse existing software components as much as possible!
I Avoid detours, delays, “nice to have” items. “Good enough” will do.

Full time/long term developers more effective than part time
personnel!

Good project management will help, too

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 10 / 31

Redmine Issue Tracker https://redmine.jlab.org

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 11 / 31

https://redmine.jlab.org

Redmine Issue Tracker — Issues by Subsystem

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 12 / 31

Redmine Issue Tracker — Issue View

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 13 / 31

Reusing Software Components

Geometry handling
I Ideally describe geometry in terms of high-level “core parameters” plus code
I DD4hep looks promising, but it’s at best beta quality
I In-memory representations: ROOT’s TGeo, Geant4’s
I File formats: GDML (not necessarily needed?)

Conditions databases
I Hall D’s CCDB is suitable. Adopted by Hall B, considered by Hall C
I Run conditions package RCDB (Hall B)

Tracking
I Already developed own Kalman filter-based tracking (Weizhi)
I Many packages available (e.g. genfit), should use for improvement

PID
I Similarly, many implementations available
I Good problem for machine learning algorithms

Event display
I TEve (ROOT) should allow rapid development

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 14 / 31

Event-Processing Framework

Standardizes access: API (Application Programming Interface)
I Event store
I Databases (e.g. geometry, conditions, configuration)
I Services (e.g. histogramming, messages)

Configures jobs

Implements event loop

Ideally, provides persistency I/O (data serialization)

Frameworks tend to be purely technical. No Physics Here

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 15 / 31

Framework: Our High-Level Requirements/Specifications

End-to-end: Framework should support all of simulation, digitization,
reconstruction and physics analysis. HLT yes, DAQ no.
Multi-pass processing: output → input for next pass
Run-time configurable:

I No recompilation for different analysis workflows/parameters
I Multiple instances of modules (with different configurations)

Multiple analysis chains per job, e.g.
I Different tracking or PID schemes
I Several physics analyses in parallel

Extensive metadata in DSTs, e.g.
I Database parameters from previous stages (geometry etc.)
I Data provenance

Interactive analysis with ROOT

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 16 / 31

Overall Most Convincing: art Framework (Fermilab)

General
I Based on CMSSW from CMS (LHC), forked in 2008
I End-to-end solution, intended for simulation, reconstruction and analysis
I Specifically intended to be a “common infrastructure” component
I Used by FNAL “Intensity Frontier” experiments (DUNE, NOvA, Darkside50,

mu2e . . .) Ca. 10 collaborations, many with data sizes ≥ SoLID
I Supported by FNAL Computing Division (Scientific Software Applications)
I Good documentation. Easy to get started
I Likely to be long-lived due to heavy commitments by major collaborations

Technical
I Written in C++11/14 by experts. High code quality.
I ROOT object I/O
I Clear, user-friendly JSON-like configuration language (FHiCL)
I No parallelization, but multi-threading in development, see

https://cdcvs.fnal.gov/redmine/issues/15372
I Input format, databases, event display and simulation engine defined by user
I http://art.fnal.gov

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 17 / 31

https://cdcvs.fnal.gov/redmine/issues/15372
http://art.fnal.gov

art FHiCL configuration file

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 18 / 31

Hall B Software
In-house development
Framework: CLARA

I Very general SaaS architecture, format-agnostic
I Multi-threaded and distributed
I Custom configuration language
I Written in Java
I Services (algorithms) can be Java, C++ or Python
I https://claraweb.jlab.org

Application: CLAS12 Offline Software / Coatjava
I Written in Java
I EVIO decoder
I In-house file format (HIPO), high-performance
I No object I/O. Data in “bank” structures (named 1-d arrays, no nesting).

Access by bank/variable name.
I In-house geometry package, derives geometry from “core parameters”
I CCDB/RCDB conditions database
I Simulation is separate package (GEMC)
I Limited documentation. Hard to get started
I http://clasweb.jlab.org/clas12offline/docs/software/html

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 19 / 31

https://claraweb.jlab.org
http://clasweb.jlab.org/clas12offline/docs/software/html

Frameworks: Technical Comparison
Feature art	(FNAL) CLARA/Hall B JANA/Hall D

Origin CMSSW	(CMS) In-house In-house

First release 2009 late	2000s? 2005

Collaborations	using	framework 10 1 1

Language C++11/14 Java (C++,	Python) C++98

Output, object	persistency ROOT HIPO (binary)
(flat	arrays	only)

HDDM (XML)

Steering,	configuration JSON-like	(FHiCL) text	files	(custom
syntax)

command	line
&	compiled	in

Reusable/multi-instance	modules yes yes very limited

Multiple analysis	chains yes yes very limited

Data	product	identification type	+	3	keys bank	name type	+	tag

Complexity	of data	object	search O(logN) O(1)? O(M>N)

Data	provenance	tracking yes no no

Test/filter	modules yes yes output	module

Parallelism no (MT	underway) MT +	distributed! MT	(partial)

Main	dependencies cet-is	(3.5	GB)
(ROOT,	boost	etc.)

JVM Xerces	XML

Preferred	installation Binary	via	UPD Source (GitHub) Source (GitHub)

Unit tests 425 29 (CLARA) 0

User documentation User	Guide	(500p),
workshops

Examples, brief	
docs	(incomplete)

Examples,	Wiki,
User	Guide (old)

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 20 / 31

Framework Adoption Scenarios I

art
Pros

I Ready now
I Wide adoption
I End-to-end
I Geant4 integration demonstrated
I Good documentation → low need for support

Cons
I Single-threaded (multi-threading under development)
I Custom build system
I Concern about long-term Fermilab support (?)

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 21 / 31

Framework Adoption Scenarios II

Hall B (CLARA+CLAS12+Coatjava)
Pros

I Distributed & multi-threaded
I Can keep using GEMC
I Geometry and conditions services ready

Cons
I Java-based (resistance from collaborators, counter to HEP trends,

incompatibility with existing libraries)
I Cumbersome bank-based data model
I In-house DST format
I Simulation separate from framework
I Thin documentation → high support burden on Hall B

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 22 / 31

Framework Adoption Scenarios III

CLARA alone
Pros

I Distributed & multi-threaded
Cons

I Little or no usable C++-based service implementations available
I Need implement bulk of framework from scratch

Options
I Marry art and CLARA
I Write distribution framework for art. Maybe less work than writing a

pile of services for CLARA.

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 23 / 31

Framework Adoption Scenarios IV

Hall D (JANA/DANA)
Pros

I Multi-threaded
I Lightweight (few dependencies)
I Easier to learn than art

Cons
I Fewer capabilities, more limitations than art
I Largely compiled-in analysis chain configuration
I In-house DST format
I Simulation separate from framework

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 24 / 31

Framework Adoption Scenarios V

EIC
Pros

I None
Cons

I Design not settled. Complete lack of specifications.
I Vaporware

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 25 / 31

Collaboration with EIC?

Pros
I Common components → reduced effort
I Easier transition between projects

Cons / Concerns
I Delays due to development of common specifications (possibly years)

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 26 / 31

Conclusions

SoLID Simulation & Reconstruction software development will be a
major effort to which development resources should be allocated in
the near future to ensure readiness.

Due to very limited manpower, we can only take a pragmatic,
effort-minimizing approach with little room for experiments.

We plan to use existing, proven resources to the maximum extent
possible.

A detailed development plan exists. We are ready to start.

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 27 / 31

Backup

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 27 / 31

State Of the Art Architecture: GAUDI Design

Converter

Algorithm

Event Data
Service

Persistency
Service

AlgorithmAlgorithm

Transient
Event Store

Detec. Data
Service

Persistency
Service

Transient
Detector
Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram
Store

Application
Manager

Converter
ConverterEvent

Selector

Data
Files

Data
Files

Figure 2: Object Diagram of the GAUDI Architecture

4.2 Transient data stores

The data objects needed by the algorithms are organized in several transient data stores, depending
on the nature of the data itself and its lifetime. The Transient Event Store contains event data that
are valid only for the time it takes to process one event. The Transient Detector Store contains
data that describe various aspects of the behavior of the detector (e.g. alignment) and generally
have a lifetime that corresponds to the processing of many events. The Transient Histogram Store
contains statistical data, which typically have a lifetime corresponding to the data processed in
a complete job. Although the stores behave slightly differently, particularly with respect to the
data lifetime (e.g. the event data store is cleared for each event), their implementations have many
things in common and are based on a common component.

A transient store helps to minimize coupling between algorithm objects and data objects.
This approach was inspired by the work done in the BaBar experiment [3]. An algorithm can
deposit some piece of data into the transient store, and these data can be picked up later by other
algorithms for further processing without knowing how they were created. This conforms to the
”blackboard” architectural style, in which the transient store fulfils the role of the blackboard.

The transient data store also serves as an intermediate buffer for any type of data conver-
sion to another representation of the data, in particular the conversion into persistent objects or
graphical objects. Thus data can have one transient representation and zero or more persistent or
graphical representations.

The organisation of the data within the transient data stores is ”tree-like”, similar to a Unix
file system. This allows data items that are logically related, such as Monte Carlo ”truth” infor-
mation, to be structured and grouped at run-time. Each node in the tree may either contain data
members, or other nodes containing further groups of data members (Figure 4). As in a directory
structure, each node is theownerof everything below it and will delete all these items when it gets
deleted. In general, object-oriented data models do not map onto a tree structure. Thus, mesh-like
object associations have been implemented using symbolic links (again inspired from the Unix file
system) in which the node does not acquire ownership of the referenced item.

From G. Barrand et al., “GAUDI - A software architecture and framework for building LHCb data processing applications”,
CHEP2000

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 28 / 31

Decoupled Algorithms & Data Objects

Data Producer

Input
Data 3

Input
Data 1

Input
Data 2

Output
Data 1

Output
Data 2

Config

Data objects (inputs & results)
I Mostly “dumb data” (structs)
I May reference other data objects
I Hold metadata

Data consumers/producers (algorithms)
I Run-time configurable
I Single algorithm per module

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 29 / 31

Analysis Chains

Track
Cand-
idates

Track
Tests

Track
Finder

Tracker
Clusters

Calo
Clusters

GEM Hit
Cluster
Finder

Tracker
Hits

Calo
Cluster
Finder

Calo
Hits

Track
Fitter

Conf=A

Fitted
Tracks

“A”

Track
Fitter

Conf=B

Fitted
Tracks

“B”

Track
Cand-
idates

Modules communicate exclusively via data objects
Module relationships configurable at run time
Multiple chains per job
Support for condition testing modules
Output modules (not shown) for DST and histogram/ntuple files

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 30 / 31

Frameworks Services Features

Feature art	(FNAL) CLARA/Hall B JANA/Hall D

Transient event	store Event,	run,	sub-run
objects

Data	“banks” With	producers

Folders	in	event	store no no no

Event	Data	Service template	function bank API template function

Message	service yes yes? yes

JobOptions Service FHiCL API config messages ParameterManager

Geant4 integration artG4 no no

Detector	Data	Service	(geo) no	(service	API) yes	(Java	geo	
model)

JGeometryXML

Detector Data	Service	(cond) no	(service	API) CCDB JCalibrationCCDB

Histogram	Service TFileService yes? no

Interactive	mode no no no

Configuration	test yes no? no

Memory	tracker yes no? no

Polymorphic data	objects yes no yes

Inter-object references art::Ptr, art::Assns
(1-1,	1-N,	N-N)

integer	indices,	
link	banks

integer indices

Ole Hansen (Jefferson Lab) SoLID Sim & Reco Software SoLID Meeting June 30, 2017 31 / 31

	Appendix

