Weak Neutral Current Studies with Positrons

Seamus Riordan seamus@anl.gov

October 13, 2017

Seamus Riordan (ANL)

Neutral Currents

Parity Violation in Electron Scattering

- Weak force couplings provide unique mode to study nature
- Charged current (e.g. β decay) maximally violating, but neutral current mixed by weak mixing angle sin² $\theta_{\rm W}$
- \bullet Arises in low $Q^2~e^-$ scattering as interference between γ and Z

• Basic object of study is PV asymmetry

Neutral Current Structure and Positrons

• Standard e⁻ parity violating asymmetry typically has two terms

$$A = \frac{R-L}{R+L} \sim \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[D_{\rm f}(\theta) g^e_A g^{\rm target}_V + D_{\rm b}(\theta) g^e_V g^{\rm target}_A \right]$$

$$g_A = T_3 \qquad g_V = T_3 - 2Q\sin^2\theta_W$$

$$T_3 \sim \binom{\nu_l}{l^-}_L, \binom{u}{d}_L, \dots$$

- Second term is typically harder to get to kinematically
 - Requires kinematic separation
 - g_V^e is \sim 0.1, g_V^q larger
- Axial terms under C effectively $g_A
 ightarrow -g_A$

Neutral Current Structure and Positrons (II)

• $e^+(R/L) - e^-(L/R)$ asymmetry offers unique interesting combination

$$\Delta = (\pm g_V^e + g_A^e) G_A^{\text{target}}(x, Q^2) \times \dots$$

- axial-axial coupling unique and not suppressed by $1 4\sin^2 \theta_W!$
- Don't actually need spin for separation relative intensity control must be much better than asymmetry
- Axial term of targets is has interesting physics opportunities
 - DIS C_{3q} couplings
 - $q \bar{q}$ pdfs
 - ep Direct access to axial form factor
- Other opportunities
 - Sign flip in EM higher order effects
 - s-channel studies

Parity Violation at JLab

- Parity experiments are high current - going to lose orders of magnitude
- Requires exquisite control of systematics
 - Rapid flipping of states!
 - Beam properties at injector
 - High precision polarimetry
 - Control and measurement of beam intensity, energy, position
- Largely going to ignore these issues

PVeS Experiment Summary

PEPPo Principle of Operation

- 100 nA 60% polarization
- 1 μA unpolarized

Elastic ep

- G0 covered Q^2 0.1-1 GeV² at various
- Two backwards angle runs on LH₂ and QE LD₂
- Extracted G_A with considerable uncertainty Axial ~ 20% contribution to proton asymmetry

- Axial form factor measured in β decay only isovector component with $n \rightarrow p$ by SU(3)
- Related to spin structure and DIS

$$\Gamma_1^p = \int_0^1 \sum e_i \Delta q_i(x) dx \sim \frac{1}{12} g_A^{(3)} + \frac{1}{36} g_A^{(8)} + \frac{1}{9} g_A^{(0)} + \dots$$

• Proton neutral current *G_A* includes isoscalar components (i.e. strange quarks and also radiative components)

$$G_{A}^{p}(Q^{2}=0) = g_{A}^{(3)}\left(1 + R_{A}^{T=1}\right) + \frac{3F - D}{2}R_{A}^{T=0} + \Delta s\left(1 + R_{A}^{(0)}\right)$$
$$\Delta s = g_{A}^{(8)} - g_{A}^{(0)}$$

Radiative Corrections

• Radiative corrections to Axial FF not well known, difficult to calculate (Zhu et al, PRD 62 (2000) 033008)

$$\frac{R_A^{T=1}}{-0.258(0.34)} \quad \frac{R_A^{T=0}}{-0.239(0.2)} \quad \frac{R_A^0}{-0.551}$$

- Typically only small suppressed component in forward experiments
- $\bullet\,$ In positron measurement targeting axial FF, on the order $10\%\,$

$$\mathcal{A}^{e^{+}-e^{-}} = \frac{G_{F}Q^{2}}{2\pi\alpha\sqrt{2}}g_{A}^{e}\frac{G_{A}^{Z}G_{M}^{\gamma}}{\epsilon\left(G_{E}^{\gamma}\right)^{2} + \tau\left(G_{M}^{\gamma}\right)^{2}}$$

- Totally overwhelmed by $\gamma\gamma$ terms
- 6 μ A, trying to get 10% measurement of G_A^Z , similar G0 kinematic run time ignoring 2γ ...
- $A_{\rm PV}$ radiative corrections (e.g. γZ box diagrams) V and A corrections have positron sign flip in each single measurement not enough to constrain (Afanasev, Carlson PRL 94 212301 (2005))

Radiative Corrections

- \bullet Exception for spinless targets \rightarrow no axial current
- Sensitive to box of extra photon

$$A_{\text{extra photon}} = A_{\text{PV}}^{e+} + A_{\text{PV}}^{e-}$$

Afanasev, Carlson PRL 94 212301 (2005)

PVDIS - Deep Inelastic Scattering

- PVDIS gives access to underlying partonic structure
- Rate at high $Q^2 \rightarrow$ relatively larger statistics and asymmetry
- A_eV_q (C_{1q}) and V_eA_q (C_{2q}) effective couplings
- Excellent combination to test new physics and QCD nucleon/nuclear structure!

$$\gamma^*$$

$$A_{\rm PV} \approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right], y = 1 - \frac{E'}{E}$$
$$a_1(x) = 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})}$$

$$\begin{array}{ll} \textbf{C}_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W = -0.19 & \textbf{C}_{2u} = -\frac{1}{2} + 2\sin^2\theta_W = -0.03 \\ \textbf{C}_{1d} = -\frac{1}{2} - \frac{2}{3}\sin^2\theta_W = -0.34 & \textbf{C}_{2d} = -\frac{1}{2} - 2\sin^2\theta_W = -0.03 \end{array}$$

SoLID - PVDIS SM and Nucleon Properties

PVDIS Asymmetry Uncertainty (%)

- 60 μA on 40 cm LH_2 or LD_2 target
- Errors for 120 days 11 GeV LD₂ give sub 1% in many bins
- $\bullet\,$ Constraints on $\Lambda\sim$ 10-20 TeV

Seamus Riordan (ANL)

SoLID - C_{3q}

Axial-Axial in DIS has effective couplings $C_{3q} = \pm \frac{1}{2}$

$$A^{e^+(R/L)-e^-(L/R)} = \frac{G_F Q^2}{4\sqrt{2}\alpha\pi} \frac{1-(1-y)^2}{1+(1-y)^2} \frac{\sum (C_{2q} \pm C_{3q}) e_q(q-\bar{q})}{\sum e_q^2(q+\bar{q})}$$

• Only measured once at CERN with μ^+ and μ^- on C to ${\sim}25\%$ level

- To get few % measurement of $2C_{3u} C_{3d}$ on LD₂, 30 days 6 μA with SoLID
- Asymmetries on the order of 100 s ppm beam quality systematics are less stringent

$\mathsf{MOLLER} \to \mathsf{BHABHA?}$

- $\sin^2 \theta_{\rm W}$ to new world leading precision
- 11 GeV beam on 150 cm LH₂ target with accepted $\theta = 6 17$ mrad

•
$$A_{\rm PV} = 35 \ ppb \ to \ 2.1\%$$

 $A_{ee} = m_e E \frac{G_F}{\sqrt{2}\pi\alpha} \frac{4\sin^2\theta_{\rm CoM}}{(3 + \cos^2\theta_{\rm CoM})^2} \left(1 - 4\sin^2\theta_W\right)$

• Symmetric in electrons - already have access to product $g^e_A g^e_V$ so probably not a lot interesting

$e^+e^- ightarrow far{f}?$

Other couplings to fermions not as well measured!

- Interesting for proton radius puzzle? (maybe in loops?)
- Need $4m_{\mu}^2 < s = 2m_e E \sim$ 43 GeV e^+ to do this on fixed target...
- Statistics for colliders off Z resonance too challenging

$e^+e^- ightarrow far{f}?$

Other couplings to fermions not as well measured!

- Interesting for proton radius puzzle? (maybe in loops?)
- $\bullet\,$ Need $4m_{\mu}^2 < s = 2m_e E \sim$ 43 GeV e^+ to do this on fixed target...
- Statistics for colliders off Z resonance too challenging