

SoLID SIDIS Program

Zhiwen Zhao (Duke)

Unified View of Nucleon Structure

Light-front wave function $\Psi(x_i, k_{T_i})$

Leading Twist TMDs

Access TMDs through Hard Processes

Drell-Yan

Distribution amplitude

SIDIS Process

SIDIS differential cross section

18 structure functions $F(x, z, Q^2, P_T)$, model independent. (one photon exchange approximation)

hadron plane $d\sigma$ $\overline{dxdydzdP_T^2d\phi_hd\phi_S}$ $=\frac{\alpha^2}{xyQ^2}\frac{y^2}{2(1-\epsilon)}\left(1+\frac{\gamma^2}{2x}\right)$ [Diehl&Sapeta EPJC2005] $\times \left\{ F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda_e \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h \right\}$ $+ S_L \left[\sqrt{2\epsilon(1+\epsilon)} F_{UL}^{\sin\phi_h} \sin\phi_h + \epsilon F_{UL}^{\sin2\phi_h} \sin2\phi_h \right] + \lambda_e S_L \left[\sqrt{1-\epsilon^2} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} F_{LL}^{\cos\phi_h} \cos\phi_h \right]$ $+ S_T \left[(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \epsilon F_{UT,L}^{\sin(\phi_h - \phi_S)}) \sin(\phi_h - \phi_S) + \epsilon F_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \epsilon F_{UT}^{\sin(3\phi_h - \phi_S)} \sin(3\phi_h - \phi_S) \right]$ $+\sqrt{2\epsilon(1+\epsilon)}F_{UT}^{\sin\phi_S}\sin\phi_S + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{\sin(2\phi_h-\phi_S)}\sin(2\phi_h-\phi_S)$ $+\lambda_e S_T [\sqrt{1-\epsilon^2} F_{LT}^{\cos(\phi_h-\phi_S)} \cos(\phi_h-\phi_S)]$ $+\sqrt{2\epsilon(1-\epsilon)}F_{LT}^{\cos\phi_S}\cos\phi_S + \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{\cos(2\phi_h-\phi_S)}\cos(2\phi_h-\phi_S)\right]\Big\}$

In parton model, $F(x, z, Q^2, P_T)$ are expressed as the convolution of TMDs and Fragmentation functions.

SIDIS Program at SoLID

Key feature: large acceptance and high luminosity enable wide coverage in all 4 kinematic bins with well controlled systematics

• E12-10-006: Single Spin Asymmetry on transversely polarized ³He, 90 days, **rated A**

• E12-11-007: Single and Double Spin Asymmetries on longitudinally polarized ³He, 35 days, **rated A**

• E12-10-008: Single Spin Asymmetry on transversely polarized proton (NH₃), 120 days, **rated A**

SoLID He3 Setup

Coverage

- Polar angle: e⁻ 8-24 deg, π^{-}/π^{+} 8-15deg
- Azimuthal angle: full
- Mom: 1-7GeV

Detection

- e- at forward angle with EC and Cerenkov to reject pions
- e- above 3GeV detected at large angle with EC to reject pions
- pions detected at forward angle with TOF and Cerenkov to suppress kaons
- GEM for tracking and Scintillator for photon rejection, MRPC and Scintillator for TOF

SoLID NH3 Setup

Polarized Target and Luminosity

polarized ³He target

Pol luminosity $\sim 10^{36}/\text{cm}^2/\text{s}$ (world record) High in-beam polarization $\sim 60\%$ Pol luminosity $\sim 10^{35}/\text{cm}^2/\text{s}$ High in-beam polarization $\sim 70\%$

polarized NH₃ target

SoLID SIDIS Kinematic Coverage

SoLID SIDIS Resolution and Error

	θ angle (mrad)	ϕ angle (mrad)	Vertex z (cm)	p (%)
SIDIS ³ He fwd angle (e)	1.3	5.7	0.9	1.7
SIDIS ³ He fwd angle (π)	1.2	5.2	0.9	1.1
SIDIS ³ He large angle (e)	1.0	1.7	0.5	1.2
PVDIS (e)	0.8	1.7	0.3	1.2

Table 21: Averaged resolutions by track fitting with most of material energy loss and without background

E_{beam} (GeV)	x	z	Q^2 (GeV ²)	$P_{h\perp}(\text{GeV})$	$\phi_h(\text{rad})$	$\phi_S(\text{rad})$
11	0.002	0.003	0.02	0.006	0.015	0.006
8.8	0.002	0.004	0.02	0.006	0.018	0.006

Table 23: Resolution of kinematical variables (in the Trento convention) with the ³He target setup.

$P_{h\perp}(\text{GeV/c})$	[0.0, 0.2]	[0.2, 0.4]	[0.4, 0.6]	[0.6, 0.8]	[0.8, 1.0]	[1.0, 1.2]
11 GeV beam (π^+)	110	160	150	105	75	40
11 GeV beam (π^-)	120	160	140	90	70	50
8.8 GeV beam (π^+)	75	95	80	50	45	
8.8 GeV beam (π^-)	65	95	75	50	45	

Table 24: The ratio of SIDIS signal and random coincidence background within 6 ns. These values are estimated with the ³He target. Similar results are obtained for the proton target.

Systematic (abs.)		Systematic (rel.)		
Raw asymmetry	0.0014	Target polarization	3%	
Detector resolution	< 0.0001	Nuclear effect	(4-5)%	
		Random coincidence	0.2%	
		Radiative correction	(2-3)%	
		Diffractive meson	3%	
Total	0.0014	Total	(6-7)%	

Table 25: The systematic uncertainties on the asymmetry measurements of SIDIS.

SoLID SIDIS FOM

 $W > 2.3 \text{ GeV} \quad 0.3 < z < 0.7$

Transversity Projection and Impact

Collins Asymmetries ~ Transversity (x) Collin Function Transversity: chiral-odd, not couple to gluons, valence behavior, largely unknown

Tensor Charge Projection and Impact

 $\langle P, S | \bar{\psi}_q i \sigma^{\mu\nu} \psi_q | P, S \rangle = \delta_T q \bar{u}(P, S) i \sigma^{\mu\nu} u(P, S) \quad \delta_T q = \int_0^1 \left[h_1^q(x) - h_1^{\bar{q}}(x) \right] \mathrm{d}x$

Tensor charge: matrix element of local operators, 0th moment of transversity Fundamental property of nucleon, valence quark dominant Direct QCD comparison: Lattice QCD,Bound-State QCD (Dyson-Schwinger), Light-cone Quark Models, ...

	World	World	SBS+CLAS12	World vs. SoLID
	vs. SBS+CLAS12	vs. SoLID	vs. SoLID	including systematics
$\delta u^{\text{measured}}$	6.1	16	2.8	6.7
$\delta d^{ m measured}$	1.9	17	9.3	11
$\delta u^{ m full}$	5.4	16	3.0	5.9
δd^{full}	1.8	17	10	10

Sivers Projection and Impact

See Tianbo's talk

Physics Extraction

Working with theorist and be part of framework

3D PDF Extraction and VAlidation (EVA) framework

Development of a reliable techniques for the extraction of 3D PDFs and fragmentation functions from the multidimensional experimental observables with controlled systematics requires close collaboration of experiment, theory and computing

Jefferson Lab

Summary

- SoLID: unique combination of large acceptance and high luminosity truly utilize 12-GeV upgrade to its full potential, no competition for SIDIS physics
- SoLID SIDIS: comprehensive program with both proton and "neutron" targets in the same setup allows for flavor separation with better control of systematics
- Multi-dimensional binning of the data with high precision help reduce theoretical uncertainties in extracting TMDs
- Apart from three approved experiments, two ``bonus'' experiments will accumulate data without additional beam

backup

Tensor Charge and Nucleon EDM

Electric Dipole Moment

Tensor charge and EDM

