SoLID Collaboration Meeting Jefferson Lab, October 14, 2017

d/u at high xand the meaning of PDF errors

Wally Melnitchouk

Outline

- **Update on** d/u ratio from global QCD analysis
- Why the need for a <u>new global analysis paradigm</u>?
 - \rightarrow Bayesian approach to fitting
 - \rightarrow single-fit (Hessian) vs. Monte Carlo approaches
- Incompatible data sets
 - \rightarrow "tolerance" factors
- Generalization to <u>non-Gaussian</u> likelihoods
 - \rightarrow disjoint probabilities, empirical Bayes, ...
- Outlook

d/u ratio

CJ15 global PDF analysis

■ NLO analysis of expanded set of proton & deuterium data → include high-x region (x > 0.5)

- Analysis of high-x data requires careful treatment of (subleading) power corrections
 - \rightarrow target mass corrections, higher twist effects

- □ Correct for nuclear effects in deuteron (binding + off-shell)
 - → binding + Fermi motion (well known), nucleon off-shell (less well known)
 - \rightarrow impact on d/u ratio in large-x region

"CJ15" – Accardi, WM, Owens (2016)

data sets used in fit

Observable	Experiment	# points	χ^2							
			LO	NLO	NLO	NLO	NLO			
					(OCS)	(no nucl)	(no nucl/D0)			
DIS F ₂	BCDMS (p) [81]	351	430	438	436	440	427			
	BCDMS (d) [81]	254	297	292	289	301	301			
	SLAC (p) [82]	564	488	434	435	441	440			
	SLAC (d) [82]	582	396	376	380	507	466			
	NMC (p) [83]	275	431	405	404	405	403			
	NMC (d/p) [84]	189	179	172	173	174	173			
	HERMES (p) [86]	37	56	42	43	44	44			
	HERMES (d) [86]	37	51	37	38	36	37			
	Jefferson Lab $\left(p\right)$ [87]	136	166	166	167	177	166			
	Jefferson Lab (d) [87]	136	131	123	124	126	130			
DIS F_2 tagged	Jefferson Lab (n/d) [21]	191	218	214	213	219	219 🗲	— BO	NuS	F_2^n/F_2^a
DIS σ	HERA (NC e^-p) [85]	159	325	241	240	247	244			
	HERA (NC e^+p 1) [85]	402	966	580	579	588	585			
	HERA (NC e^+p 2) [85]	75	184	94	94	94	93			
	HERA (NC e^+p 3) [85]	259	307	249	249	248	248			
	HERA (NC e^+p 4) [85]	209	348	228	228	228	228			
	HERA (CC e^-p) [85]	42	44	48	48	45	49			
	HERA (CC e^+p) [85]	39	56	50	50	51	51			
Drell-Yan	$E866 \ (pp) \ [29]$	121	148	139	139	145	143			
	$E866 \ (pd) \ [29]$	129	207	145	143	158	157			
W/charge asymmetry	y CDF (e) [88]	11	11	12	12	13	14			
	DØ (μ) [17]	10	37	20	19	29	28	D0	Λ	
	DO(e) [18]	13	20	29	29	14	14	- D0	A_l	
	CDF(W)[89]	13	16	16	16	14	14			
	DO(W) [19]	14	39	14	15	82	_ ←	– D0	A_W	-
Z rapidity	CDF(Z)[90]	28	100	27	27	26	26			
	DO(Z) [91]	28	25	16	16	16	16			
jet	CDF (run 2) [92]	72	33	15	15	23	25			
	DØ (run 2) [93]	110	23	21	21	14	14			
γ +jet	DØ 1 [94]	16	17	7	7	7	7			
	DØ 2 [94]	16	34	16	16	17	17			
	DØ 3 [94]	12	34	25	25	24	25			
	DØ 4 [94]	12	76	13	13	13	13			
total		4542	5894	4700	4702	4964	4817			
total \perp norm										
total + norm			6022	4708	4710	4972	4826			

~ 4500 data points, with χ^2 per datum = 1.04

• Nuclear structure function at $x \gg 0$ dominated by incoherent scattering from individual nucleons

 \rightarrow y = momentum fraction of d carried by N

 \rightarrow at finite Q^2 , smearing function depends also on parameter $\gamma = |\mathbf{q}|/q_0 = \sqrt{1 + 4M^2 x^2/Q^2}$

• Nucleon off-shell correction to quark PDF

$$\widetilde{q}(x,p^2) = q(x) \left[1 + \frac{(p^2 - M^2)}{M^2} \,\delta q(x) \right]$$

$$\rightarrow \text{ quark "spectator" off-shell model}$$

$$\widetilde{q}(x,p^2) = \int d\hat{p}^2 \,\Phi_q(\hat{p}^2, \Lambda(p^2))$$

$$\overbrace{q}{\text{ momentum distribution of quarks with virtuality } \hat{p}^2 \text{ in bound nucleon}}$$

- \rightarrow scale parameter $\Lambda(p^2)$ suppresses large- p^2 contributions
- → off-shell "rescaling" parameter $\lambda = \frac{\partial \log \Lambda^2}{\partial p^2}$ varied in fit to minimize χ^2

Kulagin, Petti (2006) Owens, Accardi, WM (2013) — "CJ12"

- In CJ12, considered 3 sets of PDFs corresponding to different amounts of nuclear corrections
 - CJ12min: WJC-1 + mild off-shell ($\lambda = 0.3\%$)
 - CJ12mid: AV18 + medium off-shell ($\lambda = 1.2\%$)
 - CJ12max: CD-Bonn + large off-shell $(\lambda = 2.1\%)^{2}$

off-shell parameter λ range motivated by Q^2 rescaling model of nuclear EMC effect *Close, Jaffe, Roberts, Ross (1988)*

Owens, Accardi, WM (2013)

- with same functional form for $u \& d \sim x^{\alpha}(1-x)^{\beta}(1+\epsilon\sqrt{x}+\eta x)$ most PDF fits obtain either $0 \text{ or } \infty \text{ for } x \rightarrow 1 \text{ limit}$
- more flexible parametrization for $x \to 1$ behavior

 $d \rightarrow d + a x^b u$

allows finite, nonzero x = 1 limit

• In CJ15, off-shell correction parametrized phenomenologically

$$\delta q^N = C_N (x - x_0) (x - x_1) (1 + x - x_0)$$

→ fitted off-shell corrections weakly dependent on deuteron wave function, except for WJC-1 (hardest momentum distribution – largest tail) Constraints from W asymmetry

- W^{\pm} asymmetry at large W-boson rapidity y_W is sensitive to d/u PDF ratio at high x
- Earlier CDF W-asymmetry data indicated preference for smaller nucleon off-shell corrections

→ model dependence of *W* asymmetry extraction from measured lepton asymmetry??

Impact on d/u ratio

 Significant reduction of PDF errors with DØ W-asymmetry & BONuS data

Impact on d/u ratio

- Different groups use different definitions of PDF uncertainties
 - → cannot compare directly...

 \rightarrow CJ15: $\Delta \chi^2 = 2.7$

$$\rightarrow$$
 MMHT: $\Delta \chi^2 \approx 25 - 100$

 \rightarrow CT14: $\Delta \chi^2 \approx 100$

$$\rightarrow$$
 JR14: $\Delta \chi^2 = 1$

... is this a meaningful comparison?

Impact on d/u ratio

- Dependence on PDF parametrization
 - \rightarrow recent analysis by AKP has tiny uncertainties, and $d/u \rightarrow 0$, which we (CJ) believe is simply parametrization bias!

* same functional form for $u \& d \sim (1-x)^{\beta}$ † more flexible form $d \to d + a x^{b} u$

... is there a more robust analysis?

Need for new technology

- A major challenge has been to characterize PDF uncertainties

 in a statistically meaningful way in the presence of
 tensions among data sets
- Previous attempts sought to address tensions in data sets by introducing
 - → "tolerance" factors (artificially inflating PDF errors)
- However, to address the problem in a more statistically rigorous way, one requires going *beyond* the standard χ^2 minimization paradigm
 - \rightarrow utilize modern techniques based on Bayesian statistics!

Need for new technology

- In the near future, standard χ^2 minimization techniques will be unsuitable — even in the absence of tensions e.g. for
 - → simultaneous analysis of collinear distributions (unpolarized & polarized PDFs, fragmentation functions)
 - → new types of observables TMDs or GPDs that will involve $> O(10^5)$ data points, with $O(10^3)$ parameters

Need for new technology

■ Typically PDF parametrizations are nonlinear functions of the PDF parameters, *e.g.*

$$xf(x,\mu) = Nx^{\alpha}(1-x)^{\beta} P(x)$$

where *P* is a polynomial *e.g.* $P(x) = 1 + \epsilon \sqrt{x} + \eta x$, or Chebyshev, neural net, ...

- \rightarrow have multiple local minima present in the χ^2 function
- Robust parameter estimation that thoroughly scans over a realistic parameter space, including multiple local minima, is only possible using MC methods

with Nobuo Sato

Connecticut / JLab

■ Analysis of data requires estimating expectation values *E* and variances *V* of "observables" \mathcal{O} (= PDFs, FFs) which are functions of parameters \vec{a}

$$E[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \,\mathcal{O}(\vec{a})$$
$$V[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

"Bayesian master formulas"

■ Using Bayes' theorem, probability distribution \mathcal{P} given by $\mathcal{P}(\vec{a}|\text{data}) = \frac{1}{Z} \mathcal{L}(\text{data}|\vec{a}) \pi(\vec{a})$

in terms of the likelihood function \mathcal{L}

Likelihood function

$$\mathcal{L}(\text{data}|\vec{a}) = \exp\left(-\frac{1}{2}\chi^2(\vec{a})\right)$$

is a Gaussian form in the data, with χ^2 function

$$\chi^{2}(\vec{a}) = \sum_{i} \left(\frac{\text{data}_{i} - \text{theory}_{i}(\vec{a})}{\delta(\text{data})} \right)^{2}$$

with priors $\pi(\vec{a})$ and "evidence" Z

$$Z = \int d^n a \, \mathcal{L}(\text{data}|\vec{a}) \, \pi(\vec{a})$$

 \rightarrow Z tests if *e.g.* an *n*-parameter fit is statistically different from (*n*+1)-parameter fit

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

Monte Carlo

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

 \rightarrow maximize probability distribution \mathcal{P} by minimizing χ^2 for a set of best-fit parameters \vec{a}_0

 $E\left[\,\vec{a}\,\right]=\vec{a}_0$

 \longrightarrow if ${\cal O}$ is \approx linear in the parameters, and if probability is symmetric in all parameters

 $E\left[\mathcal{O}(\vec{a})\right] \approx \mathcal{O}(\vec{a}_0)$

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

 \rightarrow variance computed by expanding $\mathcal{O}(\vec{a})$ about \vec{a}_0 e.g. in 1 dimension have "master formula"

$$V[\mathcal{O}] \approx \frac{1}{4} \Big[\mathcal{O}(a+\delta a) - \mathcal{O}(a-\delta a) \Big]^2$$

where

 $\delta a^2 = V[a]$

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

→ generalization to multiple dimensions via Hessian approach:

find set of (orthogonal) contours in parameter space around \vec{a}_0 such that \mathcal{L} along each contour is parametrized by statistically independent parameters — directions of contours given by eigenvectors \hat{e}_k of Hessian matrix H, with elements

$$H_{ij} = \frac{1}{2} \left. \frac{\partial^2 \chi^2(\vec{a})}{\partial a_i \partial a_j} \right|_{\vec{a} = \vec{a}_0}$$

and contours parametrized as $\Delta a^{(k)} = a^{(k)} - a_0 = t_k \frac{\hat{e}_k}{\sqrt{v_k}}$, with v_k eigenvectors of H

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

 \rightarrow basic assumption: \mathcal{P} factorizes along each eigendirection

$$\mathcal{P}(\Delta a) \approx \prod_k \mathcal{P}_k(t_k)$$

where

$$\mathcal{P}_k(t_k) = \mathcal{N}_k \exp\left[-\frac{1}{2}\chi^2 \left(a_0 + t_k \frac{\hat{e}_k}{\sqrt{v_k}}\right)\right]$$

<u>note</u>: in quadratic approximation for χ^2 , this becomes a normal distribution

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

 \rightarrow uncertainties on \mathcal{O} along each eigendirection (assuming linear approximation)

$$(\Delta \mathcal{O}_k)^2 \approx \frac{1}{4} \left[\mathcal{O}\left(a_0 + T_k \frac{\hat{e}_k}{\sqrt{v_k}}\right) - \mathcal{O}\left(a_0 - T_k \frac{\hat{e}_k}{\sqrt{v_k}}\right) \right]^2$$

where T_k is finite step size in t_k , with total variance

$$V[\mathcal{O}] = \sum_{k} \left(\Delta \mathcal{O}_{k}\right)^{2}$$

Two methods generally used for computing Bayesian master formulas:

Monte Carlo

- → in practice, generally one has $E[\mathcal{O}(\vec{a})] \neq \mathcal{O}(E[\vec{a}])$ so the maximal likelihood method will sometimes fail
- \rightarrow Monte Carlo approach samples parameter space and assigns weights w_k to each set of parameters a_k
- -> expectation value and variance are then weighted averages

$$E[\mathcal{O}(\vec{a})] = \sum_{k} w_k \mathcal{O}(\vec{a}_k), \quad V[\mathcal{O}(\vec{a})] = \sum_{k} w_k \left(\mathcal{O}(\vec{a}_k) - E[\mathcal{O}]\right)^2$$

Two methods generally used for computing Bayesian master formulas:

 $\frac{\text{Maximum Likelihood}}{(\chi^2 \text{ minimization})}$

- fast
- assumes Gaussianity
- no guarantee that global minimum has been found
- errors only characterize local geometry of χ^2 function

Monte Carlo

• slow

- does not rely on
 Gaussian assumptions
- includes all possible solutions
- accurate

- Incompatible data sets can arise because of errors in determining central values, or underestimation of systematic experimental uncertainties
 - \rightarrow requires some sort of modification to standard statistics
- Often one modifies the master formula by introducing a "tolerance" factor T

$$V[\mathcal{O}] \rightarrow T^2 V[\mathcal{O}]$$

e.g. for one dimension

$$V[\mathcal{O}] = \frac{T^2}{4} \left[\mathcal{O}(a + \delta a) - \mathcal{O}(a - \delta a) \right]^2$$

 \rightarrow effectively modifies the likelihood function

Simple example: consider observable m, and two measurements $(m_1, \delta m_1), (m_2, \delta m_2)$

 \rightarrow compute exactly the χ^2 function

$$\chi^2 = \left(\frac{m - m_1}{\delta m_1}\right)^2 + \left(\frac{m - m_2}{\delta m_2}\right)^2$$

and, from Bayesian master formula, the mean value

$$E[m] = \frac{m_1 \delta m_2^2 + m_2 \delta m_1^2}{\delta m_1^2 + \delta m_2^2}$$

and variance

nce

$$V[m] = H^{-1} = \frac{\delta m_1^2 \, \delta m_2^2}{\delta m_1^2 + \delta m_2^2} \qquad \qquad \begin{array}{c} \text{does not} \\ \text{depend on} \\ m_1 - m_2 \, ! \end{array}$$

 \blacksquare Simple example: consider observable m , and two measurements

 $(m_1, \delta m_1), (m_2, \delta m_2)$

- → total uncertainty remains independent of degree of (in)compatibility of data
- → Gaussian likelihood gives unrealistic representation of true uncertainty

■ <u>Realistic example:</u> recent CJ (CTEQ-JLab) global PDF analysis

■ <u>Realistic example:</u> recent CJ (CTEQ-JLab) global PDF analysis

■ <u>Realistic example</u>: recent CJ (CTEQ-JLab) global PDF analysis

 standard Gaussian likelihood incapable of accounting for underestimated individual errors (leading to incompatible data sets)
 — not designed for such scenarios!

Two ways in which tolerance factors usually implemented

→ CTEQ "tolerance criteria" (variations adopted by other groups, *e.g.*, MMHT, CJ)

Pumplin, Stump, Huston, Lai, Nadolsky, Tung (2012)

 \rightarrow scaling of $\Delta \chi^2$ with number of parameters (or number of degrees of freedom)

e.g. Brodsky, Gardner (2016)

JDHLM assess their PDF errors using a tolerance criteria of $\Delta \chi^2 = 1$ at 1σ ; however, the actual value of $\Delta \chi^2$ to be employed depends on the number of parameters to be simultaneously determined in the fit. This is illustrated in Table 38.2 of Ref. [15] and is used broadly, noting, e.g., Refs. [16–19]. Ref. [7] employs the CT10 PDF analysis [20], so that it contains 25 parameters, plus one for intrinsic charm. Figure 38.2 of Ref. [15] then shows that $\Delta \chi^2 \approx 29$ at 1σ (68% CL), whereas $\Delta \chi^2 \approx 36$ at 90% CL. Ref. [7] uses the criterion $\Delta \chi^2 > 100$, determined on empirical grounds, to indicate a poor fit. JDHLM employs the framework of Ref. [21] which contains 25 parameters for the PDFs and 12 for the higher-twist contributions, so that a much larger tolerance than $\Delta \chi^2 = 1$ is warranted.

□ CTEQ tolerance criteria

- for each experiment, find minimum χ^2 along given e-direction
- from χ^2 distribution determine 90% CL for each experiment
- along each side of e-direction, determine maximum range d_k^{\pm} allowed by the most constraining experiment
- T computed by averaging over all d_k^{\pm} (typically $T \sim 5 10$)

■ CTEQ tolerance criteria

■ This approach is *not consistent* with Gaussian likelihood

→ no clear Bayesian interpretation of uncertainties (ultimately, a prescription...)

■ Scaling of $\Delta \chi^2$ with # of parameters: " $\Delta \chi^2$ paradox"

- Simple example: two parameters θ_i (i = 1, 2)with mean values μ_i and standard deviation σ_i
 - \rightarrow joint probability distribution

$$\mathcal{P}(\theta_1, \theta_2) = \prod_{i=1,2} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{1}{2} \left(\frac{\theta_i - \mu_i}{\sigma_i}\right)^2\right]$$

 \rightarrow change variables $\theta_i \rightarrow t_i = (\theta_i - \mu_i)/\sigma_i$ and use polar coordinates $r^2 = t_1^2 + t_2^2$, $\phi = \tan^{-1}(t_2/t_1)$

$$d\theta_1 d\theta_2 \mathcal{P}(\theta_1, \theta_2) = \frac{d\phi}{2\pi} r dr \exp\left[-\frac{1}{2}r^2\right]$$

■ Scaling of $\Delta \chi^2$ with # of parameters: " $\Delta \chi^2$ paradox"

 \rightarrow confidence volume

$$CV \equiv \int d\theta_1 d\theta_2 \,\mathcal{P}(\theta_1, \theta_2) = \int_0^R dr \,r \,\exp\left[-\frac{1}{2}r^2\right]$$
$$= 68\% \text{ for } R = 2.279$$

 t_2

R

 \rightarrow note that $R^2 = t_1^2 + t_2^2 \equiv \chi^2$, so that confidence region for parameters $\max[t_i] = R$

 \rightarrow implies that $\theta_i = \mu_i \pm \sigma_i R$, which contradicts original premise that $\theta_i = \mu_i \pm \sigma_i$!

■ Scaling of $\Delta \chi^2$ with # of parameters: " $\Delta \chi^2$ paradox"

 \rightarrow to resolve paradox, use Bayesian master formulas

$$E[\theta_i] = \int_0^{2\pi} \frac{d\phi}{2\pi} \int_0^{\infty} dr \,\mathcal{P}(r,\phi) \,\theta_i$$
$$= \int_0^{2\pi} \frac{d\phi}{2\pi} \int_0^{\infty} dr \,r \,e^{-r^2/2} \left(\mu_i + t_i \,\sigma_i\right) = \mu_i \quad\checkmark$$

$$V[\theta_i] = \int_0^{2\pi} \frac{d\phi}{2\pi} \int_0^{\infty} dr \, \mathcal{P}(r,\phi) \, (\theta_i - \mu_i)^2$$
$$= \int_0^{2\pi} \frac{d\phi}{2\pi} \int_0^{\infty} dr \, r \, e^{-r^2/2} \, (t_i \, \sigma_i)^2 = \sigma_i^2 \quad \checkmark$$

■ Scaling of $\Delta \chi^2$ with # of parameters: " $\Delta \chi^2$ paradox"

→ no paradox if use $\Delta \chi^2 = 1$ for <u>any number</u> of parameters to characterize the 1σ CL

 \rightarrow only consistent tolerance for Gaussian likelihood is T = 1

To summarize standard maximum likelihood method...

- Gradient search (in parameter space) depends how "good" the starting point is
 - → for ~30 parameters trying different starting points is impractical, if do not have some information about shape
- Common to free parameters initially, then freeze those not sensitive to data (χ^2 flat locally)
 - \rightarrow introduces <u>bias</u>, does not guarantee that flat χ^2 globally
- □ Cannot guarantee solution is <u>unique</u>
- Error propagation characterized by quadratic χ^2 near minimum \rightarrow no guarantee this is quadratic globally (*e.g.* Student *t*-distribution?)
- □ Introduction of <u>tolerance</u> modifies Gaussian statistics

Monte Carlo methods

Monte Carlo

- Designed to faithfully compute Bayesian master formulas
- Do not assume a <u>single minimum</u>, include all possible solutions (with appropriate weightings)
- <u>Do not</u> assume likelihood is <u>Gaussian</u> in parameters
- Allows likelihood analysis to be extended to <u>address tensions</u> among data sets via Bayesian inference
- More <u>computationally demanding</u> compared with Hessian method

Monte Carlo

■ First group to use MC for global PDF analysis was NNPDF, using neural network to parametrize P(x) in Forte et al. (2002)

 $f(x) = N x^{\alpha} (1-x)^{\beta} P(x)$

— α, β are fitted "preprocessing coefficients"

- Iterative Monte Carlo (IMC), developed by JAM Collaboration, variant of NNPDF, tailored to non-neutral net parametrizations
- Markov Chain MC (MCMC) / Hybid MC (HMC)
 recent "proof of principle" analysis, ideas from lattice QCD

Gbedo, Mangin-Brinet (2017)

Nested sampling (NS) — computes integrals in Bayesian master formulas (for E, V, Z) explicitly
Skilling (2004)

Iterative Monte Carlo (IMC)

Use traditional functional form for input distribution shape, but sample significantly larger parameter space than possible in single-fit analyses

Iterative Monte Carlo (IMC)

 \blacksquare e.g. of convergence (for fragmentation functions) in IMC

Sato et al. (2016)

Nested Sampling

Basic idea: transform n-dimensional integral to 1-D integral

$$Z = \int d^n a \,\mathcal{L}(\text{data}|\vec{a}) \,\pi(\vec{a}) = \int_0^1 dX \,\mathcal{L}(X)$$

where prior volume $dX = \pi(\vec{a}) d^n a$

such that $0 < \cdots < X_2 < X_1 < X_0 = 1$

Feroz et al. arXiv:1306.2144 [astro-ph]

Nested Sampling

■ Approximate evidence by a weighted sum

$$Z \approx \sum_{i} \mathcal{L}_{i} w_{i}$$
 with weights $w_{i} = \frac{1}{2}(X_{i-1} - X_{i+1})$

- Algorithm:
 - \rightarrow randomly select samples from full prior s.t. initial volume $X_0 = 1$
 - \rightarrow for each iteration, remove point with lowest \mathcal{L}_i , replacing it with point from prior with constraint that its $\mathcal{L} > \mathcal{L}_i$
 - \rightarrow repeat until entire prior volume has been traversed
 - can be parallelized
 - performs better than VEGAS for large dimensions
 - increasingly used in fields outside of (nuclear) analysis

Nested Sampling

Recent application in global analysis of transversity TMD PDF (SIDIS data + lattice QCD constraint on isovector moment)

Lin, WM, Prokudin, Sato, Shows (2017)

- → distributions do not look very Gaussian!
- \rightarrow MC analysis gives $\delta u = 0.3 \pm 0.2$, $\delta d = -0.7 \pm 0.2 \rightarrow g_T = 1.0 \pm 0.1$
- \rightarrow maximum likelihood analysis would have given $g_T \approx 0.5$

MC Error Analysis

- Assuming a single minimum, a Hessian or MC analysis *must* give same results, if using same likelihood function
 - \rightarrow analysis of pseudodata, generated using Gaussian distribution

Sato et al. (2017)

MC Error Analysis

Assuming a single minimum, a Hessian or MC analysis must give same results, if using same likelihood function

almost identical uncertainty bands for Hessian and for MC!

MC Error Analysis

- Assuming a single minimum, a Hessian or MC analysis must give same results, if using same likelihood function
- Approaches that use Hessian + tolerance factor not consistent with Gaussian likelihood function
- NNPDF group claim that within their neural net MC methodology, no need for a tolerance factor, since uncertainties similar to other groups who use Hessian + tolerance
 - \rightarrow how can this be?
- Assuming sufficient observables to determine PDFs, then PDF uncertainties cannot depend on parametrization!

Non-Gaussian likelihood

- Rigorous (Bayesian) way to address incompatible data sets is to use generalization of Gaussian likelihood
 - joint vs. disjoint distributions
 - empirical Bayes
 - hierarchical Bayes
 - others, used in different fields

Disjoint distributions

Instead of using total likelihood that is a product ("and") of individual likelihoods, e.g. for simple example of two measurements

 $\mathcal{L}(m_1m_2|m;\delta m_1\delta m_2) = \mathcal{L}(m_1|m;\delta m_1) \times \mathcal{L}(m_2|m;\delta m_2)$

use instead sum ("or") of individual likelihoods

$$\mathcal{L}(m_1m_2|m;\delta m_1\delta m_2) = \frac{1}{2} \Big[\mathcal{L}(m_1|m;\delta m_1) + \mathcal{L}(m_2|m;\delta m_2) \Big]$$

 \rightarrow gives rather different expectation value and variance

$$E[m] = \frac{1}{2}(m_1 + m_2)$$

$$V[m] = \frac{1}{2}(\delta m_1^2 + \delta m_2^2) + \left(\frac{m_1 - m_2}{2}\right)^2$$
depends on separation!

Disjoint distributions

Symmetric uncertainties $\delta m_1 = \delta m_2$

disjoint:
$$V[m] = \frac{1}{2}(\delta m_1^2 + \delta m_2^2) + \left(\frac{m_1 - m_2}{2}\right)^2$$

joint: $V[m] = \frac{\delta m_1^2 \ \delta m_2^2}{\delta m_1^2 + \delta m_2^2}$

Disjoint distributions

Asymmetric uncertainties $\delta m_1 \neq \delta m_2$

 disjoint likelihood gives broader overall uncertainty, overlapping individual (discrepant) data

Empirical Bayes

- Shortcoming of conventional Bayesian still <u>assume</u> <u>prior</u> distribution follows specific form (*e.g.* Gaussian)
- Extend approach to more fully represent prior uncertainties, with final uncertainties that do not depend on initial choices
- In generalized approach, data uncertainties modified by <u>distortion parameters</u>, whose probability distributions given in terms of "hyperparameters" (or "nuisance parameters")
- Hyperparameters determined from data
 \rightarrow give posteriors for both PDF and hyperparameters

Empirical Bayes

■ Simple example of EB for symmetric & asymmetric errors

Outlook

- SoLID data certainly still needed to probe d/u at high x, free of nuclear corrections!
- New approaches being developed for global QCD analysis
 <u>simultaneous</u> determination of parton distributions using <u>Monte Carlo</u> sampling of parameter space
- Treatment of <u>discrepant data sets</u> needs serious attention
 Bayesian perspective has clear merits
- Near-term future: "universal" QCD analysis of all observables sensitive to collinear (unpolarized & polarized) PDFs and FFs
- Longer-term: apply MC technology to global QCD analysis of transverse momentum dependent (TMD) PDFs and FFs

• Smearing function in the deuteron computed in "weak binding approximation" – expand in powers of \vec{p}^2/M^2

 \rightarrow effectively more smearing for larger x and lower Q^2

 \rightarrow greater wave function dependence at large y (\rightarrow large x)

 \rightarrow excellent description over orders of magnitude in x and Q^2

Empirical Bayes

■ Standard mean and variance that characterize data

 $\theta = \mu + \sigma \quad \longrightarrow \quad f(\mu) + g(\sigma)$

where $f(\mu), g(\sigma)$ are unknown functions that account for faulty measurements

Simple choice is

 $(\mu, \sigma) \rightarrow (\zeta_1 \,\mu + \zeta_2, \,\zeta_3 \,\sigma)$

where $\zeta_{1,2,3}$ are distortion parameters, with prob. dists. described by hyperparameters $\phi_{1,2,3}$

Likelihood function is then

$$\mathcal{L}(\text{data}|\vec{a},\zeta_{1,2,3}) \sim \exp\left[-\frac{1}{2}\sum_{i}\left(\frac{d_{1}-f(\mu_{i}(\vec{a},\zeta_{1,2}))}{g(\sigma,\zeta_{3})}\right)^{2}\right]\pi_{1}(\zeta_{1}|\phi_{1})\pi_{2}(\zeta_{1}|\phi_{2})\pi_{3}(\zeta_{1}|\phi_{3})$$