Charged Lepton Flavor Violation

Yulia Furletova (JLAB)

Outline

- Introduction
- Why CLFV ?
- CLFV in BSM physics
- CLFV with DDVCS
- Conclusions

Vardan Khachatryan Alexandre Camsonne Yulia Furletova

Introduction

Symmetry

The Standard Model

.What is a fundamental symmetry?

.What are conserved quantities in the fundamental interactions?

.SM contains no explanation for the symmetry between quark and lepton sectors:

-mass hierarchy

-the number of generations.

-Flavor is not a conserved quantity in fundamental interactions: Flavor mixing

[&]quot;Physics page", FB

Flavors in quark sectors

g

gluon

γ

photon

Z boson

W boson

91.2 GeV/c2

80.4 GeV/c³

≈126 GeV/c²

SONS

0

ň

GAUGE

н

Higgs boson

≈2.3 MeV/c²

≈4.8 MeV/c²

0.511 MeV/c²

<2.2 eV/c2

1/2

1/2

1/2

up

C

down

е

electron

electron

neutrino

2/3

spin → 1/2

UARK

LEPTONS

≈1.275 GeV/c²

С

S

strange

muon

 ν_{μ}

muon

neutrino

105.7 MeV/c2

<0.17 MeV/c²

charm

≈95 MeV/c²

2/3

1/2

1/2

1/2

1/2

≈173.07 GeV/c³

top

b

bottom

tau

tạụ

neutrino

1.777 GeV/c2

<15.5 MeV/c²

≈4.18 GeV/c²

1/2

In the quark sector:

The flavor changing neutral currents (FCNCs) are forbidden in the standard model (SM) at tree level (require a loop process involving a virtual W exchange).

 $\left(\begin{array}{c} u \\ d \end{array}\right)$

- Family number is not a symmetry in SM: quark family number is violated in weak decays in the CKM matrix
- Flavor mixing in the standard model quark sector is well established, through processes like $K^{0}-\overline{K}^{0}$ oscillations, $B_{0}-\overline{B}_{0}$ mixing etc.

$$J_{\mu}^{cc} = (\bar{u}, \bar{c}, \bar{t})_L \gamma_{\mu} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_L$$

What about lepton sector?

Yulia Furletova

In the lepton sector:
$$\begin{pmatrix}
u_e \\ e \end{pmatrix} \begin{pmatrix}
u_\mu \\ \mu \end{pmatrix} \begin{pmatrix}
u_\tau \\
\tau \end{pmatrix}$$

- A Lepton Flavor Violation (LFV) is a transition between e, μ, τ sectors that doesn't conserve lepton family number
- Evidence of LFV: neutrinos oscillate Neutrinos have a (small) mass and mix.
- Many experiments (MINOS, K2K, Super-K, etc) at particle accelerators independently observed muon neutrino disappearance over several hundred km long baselines. OPERA observed a presence of tau in muon neutrino beam.... T2K, NOvA...

Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS)

$$egin{bmatrix}
u_e \
u_\mu \
u_ au \end{bmatrix} = egin{bmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{ au 2} & U_{ au 3} \end{bmatrix} egin{bmatrix}
u_1 \
u_2 \
u_3 \end{bmatrix}.$$

What about charged leptons ?

Charged LFV

In the charged lepton sector Lepton Flavor Violation is **heavy suppressed** in the Standard Model

 $l_{\alpha} \rightarrow l_{\beta}$ < 10⁻⁵⁴

Example of lepton flavor conservation is a muon decay $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$

Example of CLFV: neutrinoless muon decay $\mu \rightarrow e \gamma$

Opportunity for New Physics !!!

Strongest present limits on μ ->e, τ ->e, τ -> μ

Many searches for a physics Beyond the Standard Model, example $\mu^- \rightarrow e^- \gamma$

Current limit (MEG) : Br < $4.2 \cdot 10^{-13}$

LFV transitions	LFV Present Bounds $(90\% CL)$	Future Sensitivities
$BR(\mu \to e\gamma)$	$4.2 \times 10^{-13} \text{ (MEG 2016)}$	4×10^{-14} (MEG-II)
$BR(\tau \to e\gamma)$	3.3×10^{-8} (BABAR 2010)	10^{-9} (BELLE-II)
$BR(\tau \to \mu \gamma)$	4.4×10^{-8} (BABAR 2010)	10^{-9} (BELLE-II)
$BR(\mu \rightarrow eee)$	1.0×10^{-12} (SINDRUM 1988)	$10^{-16} \text{ Mu3E (PSI)}$
$BR(\tau \rightarrow eee)$	2.7×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$BR(\tau \to \mu \mu \mu)$	2.1×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$BR(\tau \to \mu \eta)$	2.3×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)
$CR(\mu - e, Au)$	7.0×10^{-13} (SINDRUM II 2006)	
$CR(\mu - e, Ti)$	4.3×10^{-12} (SINDRUM II 2004)	10^{-18} PRISM (J-PARC)
$\operatorname{CR}(\mu - e, \operatorname{Al})$		3.1×10^{-15} COMET-I (J-PARC)

<u>T.Blazek</u>, <u>S.F.King</u> "Electron to Muon Conversion in Electron-Nucleus Scattering as a Probe of Supersymmetry", <u>arXiv:hep-ph/0408157</u>

Estimated limit from $\mu \rightarrow e \gamma$ $\sigma(e + N \rightarrow \mu + N) \leq 10^{-8} fb.$

Conclusion: "We strongly urge our experimental colleagues to consider performing such an experiment".

Complementary search (e->µ) using a high luminosity environments at JLAB CEBAF:

Various BSM models that predict CLFV

Leptoquarks

.Leptoquark is a color triplet boson (appear in many SM extensions)

.Symmetry between electron and quark sectors.

.Flavor is not conserved, but

•Fermion number F= 3B+L (F= 0, F= 2) is to be conserved

 LQs model are explored in Buchmüller-Rückl-Wyler (BRW) framework under
 SU(3)xSU(2)xU(1) : 14 different LQ types (7 scalars, 7 vectors).

LQ couple to both leptons and quarks and carry SU(3) color, fractional electric charge, baryon (B) and lepton (L) number

Leptoquarks at ep/eA experiments

Туре	J	F	Q	ep dominant process	Coupling	Branching ratio β_{ℓ}	Туре	J	F	Q	ep dominant p	rocess	Coupling	Branching ratio β_{ℓ}	
S_0^L	0	2	-1/3	$\int \ell^- u$	λ_L	1/2	V_0^L	1	0	+2/3	\int	$\ell^+ d$	λ_L	1/2	
				$\left \begin{array}{cc} e_L a_L & \rightarrow \\ & & \end{array}\right\rangle \nu_\ell d$	$-\lambda_L$	1/2					$e_R a_L \rightarrow $	$\bar{ u}_\ell u$	λ_L	1/2	
S_0^R	0	2	-1/3	$e_R^- u_R \rightarrow \ell^- u$	λ_R	1	V_0^R	1	0	+2/3	$e_L^+ d_R ightarrow$	$\ell^+ d$	λ_R	1	
$ ilde{S}^R_0$	0	2	-4/3	$e_R^- d_R \rightarrow \ell^- d$	λ_R	1	$ ilde{V}^R_0$	1	0	+5/3	$e_L^+ u_R \rightarrow$	$\ell^+ u$	λ_R	1	
S_1^L (1 /2	$\int \ell^- u$	$-\lambda_L$	1/2	V_1^L			+2/3	a^+d	$\ell^+ d$	$-\lambda_L$	1/2	
	0	2	-1/3	$\left \begin{array}{cc} e_L u_L & \rightarrow \\ & & \end{array}\right\rangle \nu_\ell d$	$-\lambda_L$	1/2		1	0		$e_R a_L \rightarrow $	$ar{ u}_\ell u$	λ_L	1/2	
			-4/3	$e_L^- d_L \rightarrow \ell^- d$	$-\sqrt{2}\lambda_L$	1				+5/3	$e^+_R u_L ightarrow$	$\ell^+ u$	$\sqrt{2}\lambda_L$	1	
$V_{1/2}^{L}$	1	2	-4/3	$e_L^- d_R \rightarrow \ell^- d$	λ_L	1	$S^L_{1/2}$	0	0	+5/3	$e_R^+ u_R \rightarrow$	$\ell^+ u$	λ_L	1	
$V^R_{1/2}$	1	2	-1/3	$e_R^- u_L \rightarrow \ell^- u$	λ_R	1	$S^R_{1/2}$	$\binom{R}{1/2} 0$	0 0	0	+2/3	$e_L^+ d_L ightarrow$	$\ell^+ d$	$-\lambda_R$	1
			-4/3	$e_R^- d_L \rightarrow \ell^- d$	λ_R	1				+5/3	$e_L^+ u_L \rightarrow$	$\ell^+ u$	λ_R	1	
$\tilde{V}^L_{1/2}$	1	2	-1/3	$e_L^- u_R \rightarrow \ell^- u$	λ_L	1	$ ilde{S}^L_{1/2}$	0	0	+2/3	$e_R^+ d_R \rightarrow$	$\ell^+ d$	λ_L	1	

 Electron and positron beams probe 	1 generation	$eq \rightarrow LQ \rightarrow eqX$ $eq \rightarrow LQ \rightarrow v_eqX$	LFC	
different types of Leptoquarks -electron-proton collisions, mainly F=2 LQs are produced -positron-proton collisions, mainly F=0 LQs are produced u vs d targets	2 generation	eq -> LQ -> μqX eq -> LQ -> ν _μ qX		
 Polarization 	3 generation	eq -> LQ -> τqX eq -> LQ -> ν _τ qX	J CLF V	

`

For leptoquark Yukawa coupling $\lambda = 0.1$, the ZEUS bounds on the first-generation leptoquarks range from 248 to 290 GeV

HERA: L~ 10^{30-31} cm⁻²s⁻¹ (0.5 fb⁻¹) EIC: L~ 10^{34} cm⁻²s⁻¹ (>50 fb⁻¹) JLAB: L > 10^{38} cm⁻²s⁻¹

CLFV at EIC ($e \rightarrow \mu, e \rightarrow \tau$)

- Cross-section for $\ ep
ightarrow au X$ takes the form:

$$\sigma_{F=0} = \sum_{\alpha,\beta} \frac{s}{32\pi} \left[\frac{\lambda_{1\alpha} \lambda_{3\beta}}{M_{LQ}^2} \right]^2 \left\{ \int dx dy \ x \overline{q}_{\alpha} \left(x, xs \right) f \left(y \right) + \int dx dy \ x q_{\beta} \left(x, -u \right) g \left(y \right) \right\} \right\}$$
$$f \left(y \right) = \begin{cases} 1/2 \quad (\text{scalar}) \\ 2 \left(1 - y \right)^2 \quad (\text{vector}) \end{cases}, \ g \left(y \right) = \begin{cases} \left(1 - y \right)^2 / 2 \quad (\text{scalar}) \\ 2 \quad (\text{vector}) \end{cases}$$

Past, existing and proposed DIS facilities

From luminosity point of view, JLAB is a unique ep/eA facility in the world!

CLFV (e->μ)

- A CLFV signature via Leptoquark or Parity Violating SUSY is similar to DIS but with muon instead of electron in the final state.
- Need muon identification

CLFV ($e \rightarrow \mu$)

S. Mantry, Y.Furletova

$$\begin{split} \sigma_{F=0}^{e^- p} &= \sum_{\alpha,\beta} \frac{s}{32\pi} \Big[\frac{\lambda_{1\alpha} \lambda_{2\beta}}{M_{LQ}^2} \Big]^2 \Big\{ \int dx \int dy \, x \bar{q}_\alpha(x,xs) f(y) + \int dx \int dy \, x q_\beta(x,-u) g(y) \Big\}, \\ \sigma_{|F|=2}^{e^- p} &= \sum_{\alpha,\beta} \frac{s}{32\pi} \Big[\frac{\lambda_{1\alpha} \lambda_{2\beta}}{M_{LQ}^2} \Big]^2 \Big\{ \int dx \int dy \, x q_\alpha(x,xs) f(y) + \int dx \int dy \, x \bar{q}_\beta(x,-u) g(y) \Big\}, \end{split}$$

 $z = (\lambda_{11}\lambda_{21}/M^2_{LQ})/(\lambda_{11}\lambda_{21}/M^2_{LQ})_{\{\text{HERA LIMIT}\}}$

For JLAB12 : s : ~x 10⁻² PDFs : x 10⁻¹ But luminosity > x10⁷ higher

Luminosity:

HERA: $L \sim 10^{30-31} \text{cm}^{-2} \text{s}^{-1}$ (0.5 fb⁻¹) EIC: $L \sim 10^{34} \text{cm}^{-2} \text{s}^{-1}$ (>50 fb⁻¹) JLAB: $L > 10^{38} \text{cm}^{-2} \text{s}^{-1}$

Muon identification

Vardan Khachatryan

W $X_0 = 0.35$ cm (radiation length) $\lambda = 9.95$ cm (hadron interaction length)

Cu $X_0 = 1.44$ cm $\lambda = 15.32$ cm Fe $X_0 = 1.76 \text{ cm}$ $\lambda = 16.8 \text{ cm}$

With one 30cm tungsten absorber (W): 1-10 % of pions will be identified as muons

Need more abs/tracking sections

Need to reduce distance or place tracking close to target

-EMCAL -HCAL(Absorbers)+ Muon chambers -Vertex detector

20

Muon identification

Br (J/
$$\psi$$
-> μ + μ -) ~6%

- > Much cleaner sample from muon decay channel
- ightarrow E_{emcal}/E_{tot} , for muons Min energy in EMCAL and HCAL
- ≻ p/E
- > In addition:

Need instrumentation: muon chambers.
dE/dx, cluster counting

Conclusions

Quark mixing: observed

Neutrino mixing: observed.

Charged lepton mixing: not yet observed. Let's find it!

Backup