The Physics Case for PVDIS
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and lepton pair production at the LHC
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Outline

* The solid spectrometer and experimental program

* BSM Physics and PVDIS

* Implications of LHC Data

* PVES as a probe of hadronic structure (and BSM physics)
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Theory of PVDIS
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SoLID and the Low Energy PVES Program

* Measure each of the coupling constants as 2e™ 5",
precisely as possible. 208
* The C,’s are the most difficult to measure. PVES + APY
0.10 B sLAc-E1z2
° 1ati i JLab-Hall A
Large, upcalculable radiative corrections e e
present in coherent processes. * SM

.14

BN SoLID (proposal)

* PVDIS is the most promising approach to ats
measure one combination for the the C,’s. s
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What Does the LHC Say?

* PP—I*l- data are relevant
* LHC data is interpreted in terms of the A,
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Relating AC's to A's
N/ A 21/Ag—1/A > AC

_ o Constants related by 4X4 matrices
deRYueRIRY AR =

{evueH{arv q} + {evy’eH{ar ) +
{evueHar" v’ a} + {evuy eHao v 4}

LM = g7 ( xeT ) {evue i ay"a} + ( xer ) {evuy eHary ) +

( AT ) {evueH{ar" v q) + ( e ) ey’ eHar" g}
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Sensitivity to A in Composite Models (LHC)

2601u'501d
— — — JLab-Hall A ..
— ——— SoLID Sensitive to very
SLAC-E122 large values of A,

comparable to
LHC data.

20C5,-0C2q

LHC pp—et*e data
includes dimension 8
operators; SoLID is
limited to dimension 6.

+P2 at Mainz
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Compare Plots
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Lepton Pair Production form ATLAS
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Figure 1: Distributions of (a) dielectron and (b) dimuon reconstructed invariant mass (m.,) after selection, for data
and the SM background estimates as well as their ratio before and after marginalisation. Selected Z; signals with a
pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in log(m,,) and the shaded
band in the lower panels illustrates the total systematic uncertainty, as explained in Section 7. The data points are

6/7/ own together with their statistical uncertainty.
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Features of LHC Data

e Data goes up to 2 TeV!

* Lots of statistics at low s

* Errors at low s dominated by PDF uncertainties

* Conclusion I: Contact interaction analysis valid only for A >> 2 TeV.
e Conclusion Il: Need g2=4m
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Lepton Pair Production Cross Sections
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Direct Terms Set Limits on PV Couplings

Direct terms in cross ( ) ( ) ( >4 ( 1 >4
. * e e + ) =
Section measure: ALqL ASA A]__gL AT

Convert from LR terms 4 N 1 \*
: A(\ifqv A(\gqu Aixqv A%y

To VA terms

Direct terms therefore set upper bounds in all of the C,’s and C,’s
(Interference terms are relatively insensitive to PV.)

A;; > 40TeV from LHC: Direct terms set limits > 20 TeV
(LHC experiments fit only to a single A.)
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Any Loopholes?

Are contact interactions appropriate for Q2~A??
/ Higher order term

2
g Z of i dmas |

i.j=L,R

do a?s

dQ " 4a2AA

(14 cos0)?[1 + Odra(Q, + rLyLe)]

Higher order term interferes with
electroweak amplitude
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Another Loophole: Is there new physics below
2 TeV that LHC has failed to uncover??

* Leptophobic Z2’?
e 7" with exotic decays that make it wide?
* Dark light

Conference Talks:
LHC: no new physics below 2 TeV
Dark Matter: all physics below 2 TeV

Note: A,/A, =~ Q% for Q* K MZ;
A/A, = 1 for Q> MZ
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New Physics and c,’s

Leptophobic Z’

*Virtually all GUT models predict new Z’s
*].HC reach ~ 5 TeV, but....

eLittle sensitivity if Z’ doesnt couple to leptons
] eptophobic Z’ as light as 120 GeV could have escaped detection

00—

25—

CDF 1.1 fb!

CMS 20 fb!

Since electron vertex must be vector, the Z' cannot
couple to the Ciq’s if there is no electron coupling:
can only affect C2q’s

] SOLID can improve sensitivity:
] 100-200 GeV range

arXiv:1203.1102v1
Buckley and Ramsey-Musolf
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http://arxiv.org/abs/1203.1102v1

Impact of Leptophobic Z' Bosons on PVDIS

* & Justifies measuring C,’s
* & Example of low energy physics that LHC cannot see
e & Not a popular model

6/7/18 PVDIS Motivation
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Qweak, 2018

A

Weak angle shift for Low Q° due to Dark Z'

[Davoudiasl, Lee, Marciano (2014 )]
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Deviations from the SM prediction (due to Dark 2)
can appear “only” in the Low-E experiments.

For the Low-QZ? Parity Test (measuring Weak angle), we can use

(i) Atomic Parity Violation (Cs, ...)
(i) Low-Q2 PVES (E158, Qweak, MESA P2, Moller, SoLID...)
s/11independent of Z' decay BR (good for bethwisibly/invisibly decaying Z’).



New Models Extend Q% Range

Qweak data provides
Important limit.
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Low Q? Weak Mixing Angle Measurements and Rare Higgs Decays
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FIG. 3. Effective weak mixing angle running as a function of Q? shift (the blue band) due to an intermediate mass Z, for (a)
mz, = 15 GeV and (b) mz, = 25 GeV for 1 sigma fit to €6’ in Eq. (12). The lightly shaded area in each band corresponds to
choice of parameters that is in some tension with precisiopeonstraints (see text for more details).
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Lorentz Invariance Violation

R. Lenhert: Effect in Moller scattering.
Similar effect should also be observable in PVDIS.
Theory features many new parameters.

LHC data is irrelevant.

Gr Epry(l—y)sin’by - . -
F ky(2 y)SHl2 W) - €

V2ma (y*—y+1)

GF Eg y (1 — y) sin? Oy

V2ra (¥ —y+1)?
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SA(t) =
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SMEFT (WEFT) Analysis

e Recent publications on the subject.
* Discuss low Q? vs high Q? in ways | do not understand.
e Use spinors instead of Dirac wavefunctions.

e Use different variables: hard to connect to experiments; papers
discuss C,’s but not C,’s. (One problem is correlations)

6/7/18 PVDIS Motivation
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Review of Questions for PVDIS Physics Case

* What are the limits on the C,’s from LHC Drell-Yan data?
* Are these limits model dependent?
* Is there sub 2 TeV physics missed by the LHC?

* Are leptophobic Z' bosons useful motivation?
* Example of sub 2 TeV physics
* Sensitive to C,’s, not C,’s
* Leptophobic Z’ models were not motivated by SoLID
* Models are not very popular

6/7/18 PVDIS Motivation
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Criteria for Evaluating PVES Experiments

* Improvement over previous experiment
* AC/C

* AC

* Asin?0,,

e Models

6/7/18 PVDIS Motivation
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Kinematic Acceptance

G  |-statistical error bar o,/A (%)
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Untangling the Physics

6/7/18

Kinematic dependence of physics topics

New Physics

CSV

Higher Twist

X Y

Bur

QZ

AMeas. — ASM 1
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6/7/1

Charge Symmetry Violation

We already know CSV exists:

= u-d mass difference  dm = mg-m,= 4 MeV
6M = M,-M, = 1.3 MeV

= electromagnetic effects

* Direct sensitivity to parton-level CSV
* Important implications for PDF’ s
* Could be partial explanation of the
NuTeV anomaly
R_CSV Estimates

Reosy =

RCSV

-0.02

-0.04

-0.06

-0.08

L 1 I 1 1 Il 1 I 1 1 1 1 l 1 1 1 1 I Il 1 1 1 | 1 1 1 1 I 1 1 1 1 l
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u? () = d'(z) = odu(z)=u’(z)—d"(x)
d?(x) =" () =

dd(z)= dP(x) — u"(x)

(SAP\- 0.9 du(xz) — od(x)
Ay u(z) + d(x)
For Apy in electron-2H DIS

Sensitivity will be enhanced if u+d falls off
more rapidly than du-6dasx > 1

bag model (solid) Radionov et al.
"QED splitting (dashed) Glueck et al.

| | | |
00%""61 02 03 04 05 06 07 08 03¢ 1

q.Significant effects are predicted at high x
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Isovector EMC Effect (New Proposal)

Additional contribution

to NuTeV anomaly?
a, from CBT, “*Ca x/X,=12%, 60 days, 80uA

1
- — 82 .
— | wesmunm nave
105 | ------- 9/5 - 4 sin’e,,
N Our Projections w/ sys
-
S [
0.95—
09__. -------------------------------------------------------------
08_lllllIIlIIlIIlIllIIlIIlIIlIIlIllIIIIIlI
893 0.2 0.3 04 05 06 07 08 0.9
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A Special HT Effect

The observation of Higher Twist in PV-DIS would be exciting direct evidence for diquarks

following the approach of _ 3 _ 7
Bjorken, PRD 18, 3239 (78), V= @Yu“ ~ dyud)@ Sy = (;Yu” T dyud)
Wolfenstein, NPB146, 477 (78) |

v)=1, j (DIV* ()0 (0)] D)e™d*x

Isospin decomposition
before using PDF’ s

Z
G,0’ (VV) —(SS FY
A, =—/— b 0= -1 _
Py ﬁﬂa[a(X)+f(Y) (x)] (VV) + (SS) a(z) x P x1—-0.30
Higher-Twist valence quark-quark correlation Zero in quark-parton model

I N |
(V) =(SS)=((V =)V +8)) o< L, [ (D [u(e)y *u(x)d (O)y"* d(0))e*d*x

Y

(c) type diagram is the only operator

! ‘ {F that can contribute to a(x) higher
(a) (b) twist: theoretically very interesting!
T 17T 1 oL contributions cancel
— L=
(¢} Castorina & Mulders, 34 Use v data for small b(x) term.
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PVIDS with the Proton
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Phys. Rev. D 87
(2013) 094012
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Recent Analysis with Fermilab Data

Could improved d/u
determination improve W 1 ' ' ' T
P i |
mass measurement and 1 MMHT14 |
hence sin?6,, ? —— |
-
|

== R4
| {e—suge)

<“— helicity

scalar qq

02 04 06
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New CJ15 Plot
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Summary of Motivation for PVDIS

* Limits on A. Favored by Jlab PAC, management.
* EMC effect on “8Ca. My favorite, but not approved by Jlab PAC.
e CSV. Rule out semi-reasonable range.

* HT. Connect to np—dy? Limited literature, no models with big
effects.

e d/u. Will Marathon data help motivate new data?

6/7/18 PVDIS Motivation
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Weak angle shift for Low Q° due to Dark Z'
[Davoudiasl, Lee, Marciano (2014 )]
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Deviations from the SM prediction (due to Dark 2)
can appear “only” in the Low-E experiments.

For the Low-Q? Parity Test (measuring Weak angle), we can use
(i) Atomic Parity Violation (Cs, ...)
(i) Low-Q? PVES (E158, Qweak, MESA P2, Moller, SoLID...)
6/7/18 independent of Z’ decay BR (goodoferisoth visibly/invisibly decaying Z’).




Published 6 GeV PVDIS data from JLab

6 GeV run results
Q2 ~ 1.1 GeV?

AP (ppm) ~91.10 Wang et al., Nature 506, no. 7486, 67 (2014);
(stat.) +3.11
(syst.) +2.97
(total) +4.30

Quarks are not ).

Q%2 ~ 1.9 GeV?

ambidextrous

APIYS (ppm) -91.10
(‘ stat ) B ] 1 1 By separately scattering right- and left-handed electrons off quarksin a
) ’ y deuterium target, researchers have improved, by about a factor of five, on a
( SVst ) :t DN ) l- classic result of mirror-symmetry breaking from 35 years ago. SEE LETTER P.67
(total) +4.30
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Sensitivity in terms of A

Sensitive to very large
values of A,
competitive with
with LHC data?
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[2C5, = Cyq]

[2Cy - Cyq]
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