Run group measurements: Inclusive Spin Structure

Ye Tian and Chao Gu

Syracuse University, Duke University

Outline

Physics Motivation

> Experiment

➢ Projections

Summary and Outlook

Inclusive Electron Scattering

- **e'(E', K')** Q^2 :Four-momentum transfer
 - x : Bjorken variable (= $Q^2/2M\nu$)
 - ν : Energy transfer
 - M : Nucleon mass
 - W : Final state hadronic mass

Inclusive unpolarized cross section:

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) tan^2 \frac{\theta}{2} \right]$$

Structure Function which indicates the parton distribution

Inclusive Electron Scattering

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{Mott} \begin{bmatrix} \frac{1}{\nu} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2) \tan^2 \frac{\theta}{2} \\ +\gamma g_1(x,Q^2) + \delta g_2(x,Q^2) \end{bmatrix}$$

2 addition Structure Function which related to the polarized parton distribution

How to get g_2

E12-11-108

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = rac{1}{2} \sum_i e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

□ g_2 is zero in the naive parton model non-zero value carries information of quark-gluon interaction Ignoring quark mass effect of order O(m_q/Λ_{OCD})

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g}_2(x,Q^2)$$

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = rac{1}{2} \sum_i e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

□ g_2 is zero in the naive parton model non-zero value carries information of quark-gluon interaction Ignoring quark mass e ect of order $O(m_q/\Lambda_{OCD})$ (m_q/Λ_{OCD})

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + g_2(x,Q^2)$$

• leading twist related to g_1 by Wandzura-Wilczek relation

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

related to amplitude for scattering off asymptotically free quarks

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = rac{1}{2} \sum_i e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

□ g_2 is zero in the naive parton model non-zero value carries information of quark-gluon interaction Ignoring quark mass e ect of order $O(m_q/\Lambda_{QCD})$ (m_q/Λ_{QCD})

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g}_2(x,Q^2)$$

• leading twist related to g_1 by Wandzura-Wilczek relation

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

 g₂- g₂^{WW}: a clean way to access twist-3 contribution, quantify q-g correlations

related to amplitude for scattering off asymptotically free quarks

quark-gluon interaction and the quark mass effects

d₂: twist-3 matrix element

d₂: the x² moment of $\overline{g}_2(x,Q^2)$, twist-3 matrix element $d_2(Q^2) = 3\int_0^1 x^2 [g_2(x,Q^2) - g_2^{WW}(x,Q^2)] dx$ $= \int_0^1 x^2 [2g_1(x,Q^2) + 3g_2(x,Q^2)] dx$

- ✓ Calculate on the Lattice.
- ✓ Link to the transverse force acting on the quark that absorbed the virtual photon in a transversely polarized nucleon, and thus to the Sivers effect^[1, 2, 3].

 d_2 at lower Q^2

 d_2 at large Q^2

provides a mean to study the transition from perturbative to nonperturbative behavior and to quantify higher-twist effects. related to the color polarization, which describes how the color electric and magnetic fields respond to the nucleon spin.

Test the Burkhardt-Cottingham (BC) Sum Rule

BC = Measured+low_x+Elastic

Measured: Measured x-range

low-*x*: refers to unmeasured low x part of the integral. Assume $g_2 = g_2^{WW}$

Elastic: From well know elastics form Factors

- violation for proton at large Q² (from SLAC data)
- But found satisfied for the neutron (HallA data)

Proton g₂ Existing Data

- □ First precise measurement of proton g_2 from SLAC, averaged Q² ≈ 5 GeV²
- □ HERMES: 0.004 < x < 0.9, $0.18 < Q^2 < 20 \text{ GeV}^{2^{56}}$
- Measurement form Jefferson Lab:
- > RSS medium Q^2 :
 - $1 < Q^2 < 2 \ GeV^2$ -- Published

K.Slifer, O. Rondon et al. PRL 105, 101601 (2010))

> SANE – high Q^2 :

 $2 < Q^2 < 6 \ GeV^2$ ---arXiv: 1805.08835

▶ g2p -- low Q2:

 $0.02 < Q^2 < 0.2 \ GeV^2$ -- Analysis in progress

11

Proton d₂ Existing Data

Revealing Color Forces with Transverse Polarized Electron Scattering Arxiv:1805.08835

Experiment: SIDIS Transversely Polarized Proton (E12-11-108)

- JLab/UVa polarized NH3 target with upgraded design of the magnet
- Target spin-flip every two hours with average in-beam polarization of 70%
- Two Beam energies: 11 GeV and 8.8 GeV
- Polarized luminosity with 100nA current: 5.9e35 cm⁻²s⁻¹
- Beamline chicane to transport beam through 5T target magnetic field (already designed for g2p expt.)

■ Measure **proton** spin asymmetries $A_{\perp}(x, Q^2)$, structure function $g_2(x, Q^2)$ at momentum transfer $1 \le Q^2 \le 11$ GeV² and Bjorken x 0.05 < $x \le 0.97$.

Study x and Q² dependence, twist-3 effects, moments of g₂(x, Q²) and comparison with Lattice QCD predictions.

Event Rates

Event rates from corresponding proposal:

Process	Forward angle	Large angle	Forward angle	Large angle
	$11 { m GeV}$	$11 { m GeV}$	$8.8 {\rm GeV}$	$8.8 {\rm GeV}$
$(e,e\pi^+)$	187 Hz	11.6 Hz	161 Hz	7.3 Hz
$(e,e\pi^{-})$	$243 \mathrm{~Hz}$	$14.6~\mathrm{Hz}$	$235 \mathrm{~Hz}$	$10.5 \ \mathrm{Hz}$
single e^-	22.2 kHz	$0.65 \mathrm{~kHz}$	$34.5 \mathrm{~kHz}$	$0.87~\mathrm{kHz}$
single π^-	$299 \mathrm{~kHz}$	$0.65 \mathrm{~kHz}$	260 kHz	$0.39 \mathrm{~kHz}$
single π^+	$520 \mathrm{~kHz}$	$2.73 \mathrm{~kHz}$	$455 \mathrm{~kHz}$	$1.65 \mathrm{~kHz}$

SIDIS-NH3

55 days 11 GeV 27 days 8.8 GeV Single e trigger?

Process	Rate	Rate	Rate	Rate
	Forward	Large	Forward	Large
	angle 11 GeV	angle 11 GeV	angle $8.8~{\rm GeV}$	angle 8.8 GeV
$(e,e\pi^+)$	$1467 \mathrm{~Hz}$	192 Hz	$810 \ \mathrm{Hz}$	117 Hz
$(e e \pi^{-})$	$1010 { m ~Hz}$	120 Hz	554 Hz	73 Hz
single e^-	88.5 kHz	$11.0 \mathrm{~kHz}$	$151 \mathrm{~kHz}$	$16.5 \mathrm{~kHz}$
high energy photon	$623 \mathrm{~kHz}$	$51.5 \mathrm{~kHz}$	$596 \mathrm{~kHz}$	$37 \mathrm{~kHz}$
single π^+	$2.90 \mathrm{~MHz}$	20.2 kHz	$2.5 \mathrm{~MHz}$	$13.4 \mathrm{~kHz}$
single π^-	$1.77 \mathrm{~MHz}$	$14.5 \mathrm{~kHz}$	$1.47 \mathrm{~MHz}$	$9.2 \mathrm{~kHz}$
single K^+	226 kHz	$5.9 \mathrm{~kHz}$	$185 \mathrm{~kHz}$	$4.1 \mathrm{~kHz}$
single K^-	$54.6 \mathrm{~kHz}$	$1.2 \mathrm{~kHz}$	$39.9 \mathrm{~kHz}$	$0.6 \mathrm{~kHz}$
single proton	$1.15 \mathrm{~MHz}$	$13.8 \mathrm{~kHz}$	$0.99 \mathrm{~MHz}$	$9.4 \mathrm{~kHz}$
low energy photon	200 MHz	-	$200 \mathrm{~MHz}$	-

SIDIS-3He

48 days 11 GeV 21 days 8.8 GeV Coincident trigger?

proposal PR12-11-108 and PR12-09-014

Kinematic Coverage

- Generated inclusive QE+resonance+DIS events: The W<3 GeV Peter Bosted fit The W>3 GeV world PDF sets
- GEMC+detector acceptance

11GeV beam

8.8GeV beam

Projections: x^2g_2

Beam E_0 = 8.8 GeV, polarization 70%, Dilution 0.17

- F2 from global PDFs (CT14)
- Error bar: Pure statistic error
- The systematic errors will be estimated in the future proposal, including the g_1 contribution, the azimuthal angle resolution, the acceptance and etc ...

From Chao Gu

Projections: x^2g_2

Beam E_0 = 11 GeV, polarization 70%, Dilution 0.17

- F2 from global PDFs (CT14)
- Error bar: Pure statistic error
- The systematic errors will be estimated in the future proposal, including the g₁ contribution, the azimuthal angle resolution, the acceptance and etc ...

From Chao Gu

Projections: d₂

Summary and Outlook

Precision measurement of the proton and neutron spin structure function (g^p₂ and gⁿ₂) and Asymmetries A₂ form SIDIS experiment with transversely polarized NH3, 3He, and longitudinally polarized 3He targets.

Study x and Q² dependence, twist-3 effects, moments of g₂(x, Q²) and comparison with Lattice QCD predictions.

More simulation work and writing the proposal.

Welcome to join us!

Backups

How to get g₂ by using the real target polarizations

Target polarization is not exactly perpendicular to the beam line

F1 was calculated from global fit on F2 and R= $\sigma_L(x, Q2)/\sigma_T(x, Q2)$

https://arxiv.org/abs/hep-ex/0204028v1

g2

More general g2 can be written by:

$$\bar{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \begin{bmatrix} \frac{m_{q}}{M} h_{T}(y,Q^{2}) + \zeta(y,Q^{2}) \end{bmatrix} \frac{\mathrm{d}y}{y}$$
quark transverse momentum contribution twist-3 part which arises from quark-gluon interactions