SOLID COLLABORATION MEETING

RECENT PROGRESS ON MCP-PMT/LAPPDTM

Large Area Picosecond PhotoDetector (LAPPDTM)

JUNQI XIE

Detector R&D Argonne National Laboratory 9700 S Cass Ave., Lemont, IL 60439 jxie@anl.gov

January 10, 2019 Jefferson Lab, Newport News, VA USA

FOLLOW-UP FROM MY LAST TALK IN 2016 05 AT SOLID COLLABORATION MEETING

My first talk on application of LAPPDTM was given on May, 7, 2016

05/7 (Saturday), Room L102-104

Morning

9:00	GEM-China PDF 🗅	Jianbei Liu
9:15	Discussion	
9:20	GEM-USA PPTX 🗗 PDF 🗅	Kondo Gnanvo
9:35	Discussion	
9:40	MRPC	Yi Wang
9:55	Discussion	
10:00	Fast TOF PPTX	Junqi Xie
10:15	Discussion Last laik IOCUS. IOF	
10:20	Break	
10:40	EM calorimeter PDF 🗅	Xiaochao Zheng
11:10	Discussion	
11:20	Light Gas Cherenkov PDF 🗅	Sylvester Jooster
11:35	Discussions This talk focus: Cherenkov	
11:40	Heavy Gas Cherenkov pptx 🖓 pdf 🗅	Zhiwen Zhao
11:55	Discussions	
12:00	General Discussions	

https://hallaweb.jlab.org/wiki/index.php/Meeting_solid_coll_2016_05

BACKGROUND: LARGE AREA PICOSECOND PHOTODETECTOR (LAPPD)

- LAPPD is a photomultiplier based on new generation microchannel plate, reinvents photodetector using transformational technologies.
- Goals: low-cost, large-area (20 cm x 20 cm), picosecond-timing, mm-position
- Applications: picosecond timing, mm-spatial on large-area
 - ✓ Particle physics: optical TPC, TOF, RICH
 - ✓ Medical imaging: PET scanner, X-ray imaging devices
 - ✓ National security: Detection of neutron and radioactive materials
- Status: Incom, Inc. is routinely producing standard LAPPD on a pilot production basis for test and evaluation by "Early Adopters".

ARGONNE 6 CM MCP-PMT & LAPPDTM

Small form factor LAPPD (6 cm MCP-PMT) was produced at Argonne for R&D. Knowledges, Design and Experiences were transferred to Incom to support commercialization of 20 cm LAPPDTM Commercialization: 20x20 cm²

R&D test bed: 6x6 cm²

- ➤ The Argonne 6 cm MCP-PMT and Incom 20 cm LAPPDTM share the same MCPs and similar internal configuration and signal readout.
- ➤ The Argonne 6 cm MCP-PMT serves as R&D test bed for performance characterization and design optimization; Incom 20 cm LAPPDTM is the final commercialized product.
- Close collaboration and communication (bi-weekly meeting, joint SBIR program), optimized configurations are directly transferred to Incom production line for mass production.

ARGONNE 6 CM MCP-PMT FLEXIBLE DESIGN FROM INITIAL LAPPD

- A glass bottom plate with stripline anode readout
- A glass side wall that is glass-frit bonded to the bottom plate
- A pair of MCPs (20µm pore) separated by a grid spacer.
- Three glass grid spacers.
- A glass top window with a bialkali (K, Cs) photocathode.
- An indium seal between the top window and the sidewall.

A very flexible platform for R&D efforts!

PHOTODETECTOR FABRICATION LAB

The only place in US academia that functional MCP-PMTs with world largest, low-cost Incom MCPs were fabricated.

- Tube processing is very challenging
- Achieved 95% sealing yield

7

TEST FACILITIES

Optical Table for photocathode test

ANL g-2 Magnetic Field Test Facility

ps-Laser Facility for timing characterization

JLab/Fermilab Test Beam Facilities

ARGONNE MCP-PMT KEY PERFORMANCE

WITH 20 MICRON MCP PORE SIZE

Signal component

Gain > 10⁷

Timing resolution

Argonne

COMMERCIALIZED GEN-I LAPPDTM KEY PERFORMANCE WITH 20 MICRON MCP PORE SIZE, STRIPLINE READOUT

Credit to: Incom, Inc. LAPPD R&D group

Gain & Timing

Gain vs. MCP voltage LAPPD 25

WITH THE SUCCESS OF GEN-I LAPPDTM COMMERCIALIZATION

NEXT

APPLICATION OF CURRENT LAPPD[™] TO PROJECTS & APPLICATION DRIVEN OPTIMIZATION

Near-term: SoLID

ARGONNE 6 CM MCP-PMT IN MAGNETIC FIELD

Internal resistor chain design Gain drops quickly 0 < B < 0.15 T Individual biased design External HV divider B field tolerance 0 < B < 0.7 T

IBD design with 10 μm MCPs B field tolerance 0 < B < 1.3 T

- Optimization of biased voltages for both MCPs: version 1 -> 2
- Smaller pore size MCPs: version 2 -> 3
 Further improvement: reduced spacing (currently under fabrication) and even smaller pore size (6 µm)

MCP-PMT TIMING RESOLUTION IMPROVEMENT

TransitTime [ps]

Suppressed back scattering signal

TransitTime [ps]

Argonne 🕰

INCOM 20 CM LAPPDTM IN MAGNETIC FIELD

Supported by SBIR Phase I program, Phase II will be submit at end of Jan. 2019.

Magnetic Field Strength (Tesla)

The B field tolerance can also be further enhanced by adjusting the HVs, further study is planned.

PLANNED EXPERIMENT FOR SOLID THIS SPRING

With the fast-timing and magnetic field tolerance, the LAPPDTM may be used for SoLID to replace MAPMTs, significantly suppress the background at high rate environment.

- 1) How is LAPPDTM performance compared to MAPMT?
- 2) What is LAPPD's rate capability? Will it survive at SoLID environment?

Exploring experiments planned during March experiment in Hall C for SoLID:

- 1) 6 cm MCP-PMT (glass window) with wavelength shifter, performance comparison to MAPMT.
- 2) 20 cm LAPPDTM with quartz window performance test at high rate environment.

1) ARGONNE 6 CM MCP-PMT (B33 GLASS WINDOW) COATING WITH P-TERPHENYL WAVELENGTH SHIFTER

MCP-PMT loaded

Credit to: M. Rehfuss, Temple University

Anode J5, J23, J31 were readout (circled in red)

p-Terphenyl border p-Terphenyl spectra

	Rela	^{tive} Gain	•	1000
LED (nm)	J5	J23	J31	800
315	1.11	1.23	1.05	600
285	4.07	3.74	3.61	400
275	13.2	12.0	10.2	200

The relative gain (>10 times at 275 nm) is much larger than what was seen from the UV-glass PMTs (which showed around a ~1.5 gain at 265 nm), due to the strong absorption of B33 glass. N_{PE} $\approx \frac{\mu^2}{\sigma^2}$

1) ARGONNE 6 CM MCP-PMT (B33 GLASS WINDOW) COATED WITH P-TERPHENYL WAVELENGTH SHIFTER

	Before	After
	p-Terphenyl coating	p-Terphenyl coating
QE (300 nm)	5.2 %	7.4 % (1.4 relative gain on QE)
Gain (405 nm, SPE)	1.29×10 ⁷	1.03×10 ⁷
Timing resolution (405 nm, SPE)	55 ps	60 ps

JLAB HALL C HIGH RATE ENVIROMENT EXPT.

- 1) 6 cm MCP-PMT with wavelength shifter coating will be installed and checked in January.
- 2) LAPPDTM with quartz window is under scheduled to be delivered before Mar 8, install Mar 8-11 during beam down time.
- 3) Rate capability experiment on MAPMT, 6 cm MCP-PMT and LAPPDTM will be performed in March accelerator run time.

SUMMARY

- An MCP-PMT fabrication facility was designed and built at Argonne National Laboratory, serving as a very flexible facility for MCP-PMT R&D.
- Knowledge and experience were shared with industry to support commercialization.
- □ LAPPD collaboration successfully commercialized the LAPPDTM.
- R&D on LAPPD towards particle identification application is on going, focusing on design optimization:
 - Magnetic field tolerance
 - Timing resolution
 - Pixel readout
- MCP-PMT with smaller pore size exhibits significantly improved magnetic field tolerance and timing resolution.
- Devices are prepared and beamline experiments are planned targeting SoLID application.

ACKNOWLEDGMENTS

W. Armstrong, J. Arrington, D. Blyth, K. Byrum, F. Cao, M. Demarteau, G. Drake, J. Elam, J. Gregar, K. Hafidi, M. Hattawy, S. Johnston, S. Joosten, A. Mane, E. May, S. Magill, Z. Meziani, J. Repond, S. Riordan, R. Wagner, D. Walters, L. Xia, H. Zhao Argonne National Laboratory, Argonne, IL, 60439 K. Attenkofer, M. Chiu, Z. Ding, M. Gaowei, J. Sinsheimer, J. Smedley, J. Walsh Brookhaven National Laboratory, Upton, NY, 11973 B. W. Adams, M. Aviles, T. Cremer, C. D. Ertley, M. R. Foley, C. Hamel, A. Lyashenko, M. J. Minot, M. A. Popecki, M. E. Stochaj, W. A. Worstell Incom, Inc., Charlton, MA 01507 A. Camsonne, J.-P. Chen, P. Nadel-Turonski, W. Xi, C. Zorn Jefferson Lab, Newport News, VA, 23606 M. Rehfuss Temple University, Philadelphia, PA, 19122 J. McPhate, O. Siegmund University of California, Berkeley, CA, 94720 A. Elagin, H. Frisch University of Chicago, Chicago, IL, 60637 Y. Ilieva University of South Carolina, Columbia, SC, 29208

And many others ...

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, and Office of Nuclear Physics under contract number DE-AC02-06CH11357 and DE-SC0018445.

Thank you for your attention!

Questions?

