Updates from the SoLID-GEM Chinese Collaboration

Jianbei Liu

for the SoLID-GEM Chinese Collaboration

University of Science and Technology of China

SoLID Collaboration Meeting January 10, 2018 JLab

SoLID-GEM Chinese Collaboration

China Institute of Atomic Energy (CIAE)

Lanzhou University

Institute of Modern Physics, CAS (IMP)

Tsinghua University

Tsinghua University

University of Science and Technology of China (USTC)

Lanzhou University

• Recent development on DAQ with APV25 readout

DAQ Design and development

Design Diagram

DAQ board

Comparison with MPD

	New DAQ	MPD
Chip	Xilinx XC5VSX50T: 4.752Mb-RAM	Altera EP1AGX50DF : 2.475Mb-RAM
Protocol	Ethernet 1000Mbps	VME 60Mbps
I/O	HDMI Type A Easy to buy	
Power	low-voltage power supply	

Backplane board copied from INFN

A A A A A A A A A A A A A A A A A A A	OxFA	Detector ID	Board ID	Work Mode	
	Trigger Number				per trigger : 288B
	Total Trigger Counts				
		Time_dat	ta[63:32]		per trigger : 8,408KB
		Time_da	ta[31:0]		
	Reservel				
	Channel	No_1 Data	Channel N	lo_2 Data	
	Channel	No_3 Data	Channel N	lo_4 Data	4 chips * 30 samples * 320
					rate *2 hours =800GB
	Channel N	lo_125 Data	Channel No	_126 Data	
	Channel N	lo_127 Data	Channel No	_128 Data	Working OK
	02	xFB	Sta	tus	
0=* 	Byte Count				
	Data Format				

Data transmission speed: 120MB/s when writing to memory Reaching the limit of Gigabit Ethernet.

Test with a Detector

3 Alpha sources (Am-241), each illuminating the detector through a slit. Two-dimensional strip readout with 167 channels in each dimension.

A typical Alpha signal with 30 samples

- uRWELL R&D
- VMM readout development

The uRWELL detector

- Micro-Resistive WELL (µRWELL) is a novel sparkprotected Micro-Pattern Gaseous Detector (MPGD) with a single well-type amplification stage
- **Resistive Electrode** • Drift Cathode One-stage WELL pattern . DLC layer: ~0.1 µm -45 MO/ 3mm Suppress discharge • hePreg: 58 µm Better gain uniformity **µRWELL PCB** Compact and high granularity • **Fabrication fast** • Typical structure of µRWELL detector Schematic of µRWELL PCB (Drift + μ RWELL PCB = μ RWELL)

µRWELL PCB: A stack of "readout PCB / insulating pre-preg / DLC resistive layer / well-type amplification structure"

A critical component of μ RWELL PCB is DLC resistive electrode which is used to suppress the discharge.

DLC resistive electrode

 We are collaborating with State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences on DLC production.

Sigma/mean=12%

72	62	60
MΩ/□	MΩ/□	MΩ/□
64	57	63
MΩ/⊡	MΩ/⊡	MΩ/⊡
71	59	66
MΩ/⊡	MΩ/□	MΩ/□

a DLC sample of 15cm \times 15cm, resistivity uniformity: \pm 12%

New sputtering system

A New sputtering system (Hauzer 850) is ready to make larger area DLC samples.

Chamber size: Φ800mm×900mm Best Sample size (up to): 500mm×500mm (Rigid substrate), 500mm × 1900mm (Flexible substrate)

2-D μ **RWELL PCB with DLC**

A 2-D $\mu RWELL$ PCB with 15cm \times 15cm DLC was designed and fabricated. The DLC was made in China

µRWELL PCB

- Sensitive area: 10cm × 10cm divided into 4 sectors
- Well pitch: 140 μm
- Pre_preg (50 μm) isolate the DLC electrode from readout strip
- 2-D readout strip
- Pitch: 400 μm
- Top layer: 80 μm
- Bottom layer: 350 μm
- Insulate thickness: 50 μm
- Readout strip channel: 1024

All the readout strips are connected to 4 HIROSE (for laboratory test) / PANASONIC (for beam test) connectors.

Performance

R&D on high-rate uRWELL

- High rate uRWELL aiming for > ~ 1 MHz/cm2
- Collaborating with G.Bencivenni from INFN
- Two Approaches
 - Double-resistive layer
 - Conductive-Dashed Grid

Double-resistive layer

Reduce the path of the current on the DLC surface by implementing a matrix of conductive vias connecting two stacked resistive layers. A second matrix vias connects the second resistive layer to ground through the readout electrodes.

From G.Bencivenni, The "MPGD Stability" workshop, 21-June-2018

The engineering/industrialization of the double-resistive layer is difficult due to the manufacturing of the conductive vias on kapton foil. This solution was abandoned.

Conductive-Dashed Grid

The copper clad on the DLC is etched to dash strips and grounded at every a few mm. The charge collected on the DLC can be quickly released via the grounded copper strips. **New combined structure (Cu/DLC/APICAL/Cu) is required to make high-rate µRWELL PCB.**

Technique for depositing copper on DLC needs to be developed.

This work is supported by a RD51 common project: DLC based electrodes for future resistive MPGDs.

RD51 Common Project

DLC based electrodes for future resistive MPGDs

name: Yi Zhou **Contact person:** address: Jinzhai Road No.96, Hefei, Anhui, P.R.China, 230026 telephone number: +86-551-63607940 CERN e-mail: zhouvi@mail.ustc.edu.cn Factors affect DLC in Detector fabricatio 1. State Key Laboratory of Particle Detection and Electronics, **RD51 Institutes:** University of Science and Technology of China, contact person: Yi Zhou e-mail: zhouyi@mail.ustc.edu.cn LICP USTC KOBE 2. Kobe University, Production of large Small DLC + Cu contact person: Atsuhiko Ochi Theoretical calcula Size DLC + Cu foils and simulation foils production e-mail: ochi@kobe-u.ac.jp 3. CERN contact person: Rui de Oliveira e-mail: Rui.de.Oliveira@cern.ch CERN Detector Production 4. Laboratori Nazionali di Frascati dell'INFN with DLC foils contact person: Giovanni Bencivenni e-mail: Giovanni.Bencivenni@lnf.infn.it **USTC** is organizing this project. Ext. Collaborators: 1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science contact person: Lunlin Shang e-mail: shangll@licp.cas.cn

DLC based electrodes for future resistive MPGDs

Title of project:

LNF-INFN

Long-tern stability

and aging test

Progress on copper coated DLC

Deposit copper on DLC by magnetron sputtering was developed.

- 1. Deposit DLC on APICAL/Cu substrate
- 2. Deposit copper on DLC/APICAL/Cu substrate

Good adhesion between DLC and copper.

The thickness of copper can be adjusted from 1 μm to 5 $\mu m.$

Several substrates have been tried to make the Conductive-Dashed Grid μ RWELL PCB.

<image>

Conductive-Dashed µRWELL PCB

- 1. Cu/DLC/APICAL/Cu substrate
- 2. Etch the copper clad on DLC to dash strip
- 3. Glue the readout PCB and substrate
- 4. Etch the copper clad on the APICAL
- 5. Etch APICAL

Several high-rate $\mu RWELL$ prototypes have been fabricated and tested at PSI.

Performance

Preliminary result from Giovanni

Conductive-Dashed Grid: SG2++

The resistive electrode of SG2++ was made by a new combined structure (Cu/DLC/APICAL/Cu) from USTC.

- Efficiency: 97% @SG2++
- Rate capability: Gain drop 20% @10 MHz/cm²

Design of a VMM-based FEE card

- Two 140-pin Hirose connector, four VMM chips → 256 channels
- 64 4-channel ESDs (SP3004) for input protection
- HDMI with four high-speed Differential pairs (~340Mbps bandwidth) for output.

Design of a DAQ board

- 8 HDMIs (8 × 256 channels), scalable.
- Receive and fan out the clock and trigger signal
- Both auto-trigger and external trigger available.

Integration and test

FEE noise:

Standalone: <u>Vp</u>-p<=4mV, Vrms<=800uV With detector: <u>Vp</u>-p<=20mV, <u>Vrms</u><=3mV

Timing resolution: RMS = ~0.5ns

Channel tdo Distribution Graph 2

A Micromegas detector

Signal with cosmic rays and X-rays

Testing with cosmic rays and 5.9keV x-rays

cosmic ray signal (anode)

X-ray signal (anode)

