Progress of the high time resolution MRPC

Yancheng Yu 2019/01/10

Part I Study on the intrinsic time resolution of MRPC

Theoretical analysis

- □ Particles impinge on the MRPC detector
- **C**reate the ionized electron-ion pairs
- □ The number of primary electrons and the following avalanches account for the final time resolution

Suppose there is an electron created at position z = 0 and drift along the *z* axis under the electric field. The probability for it to become n electrons at position *z* is $P(n, z)^*$:

$$P(n,z) = \frac{1-k}{\bar{n}}e^{(k-1)\frac{n}{\bar{n}}} = \frac{1}{A'_{av}}e^{-\frac{A'}{A'_{av}}} \quad where \ A'_{av} = \frac{\bar{n}}{1-k}$$

 \bar{n} is the mean value of the number of electrons at z, and k is the ratio η/α

*Riegler W, Lippmann C, Veenhof R. Detector physics and simulation of resistive plate chambers[J]. Nuclear Inst& Methods in Physics Research A, 2002, 500(1):144-162.

Theoretical analysis

□ The amplitude A_j of the signal caused by only 1 single electron follows an exponential distribution with a mean value of A_{av}

$$f(A_j) = \frac{1}{A_{av}} e^{-\frac{A_j}{A_{av}}}$$

 \square According to the Ramo theory, the induced current of *m* primary electrons is:

$$i = \sum_{j=1}^{m} A_j e^x = \left(\sum_{j=1}^{m} A_j\right) e^x = Be^x \qquad x = (\alpha - \eta)vt = \alpha'vt$$

□ The probability distribution function (PDF) of variable B can be obtained using $f(A_j)$ $B^{m-1}e^{-\frac{B}{A_{av}}}$

$$f(B) = f(A_1) \otimes f(A_2) \dots \otimes f(A_m) = \frac{B^{m-1}e^{-A_{av}}}{(m-1)!A_{av}^m}$$

Theoretical analysis

 \square If a fixed threshold B_{th} is set to the current *i*

 \square Then the PDF of x can be obtained with f(B) and the relationship between B and x

$$g(x) = f(B(x)) \left| \frac{\mathrm{d}B}{\mathrm{d}x} \right| = \frac{r^m}{(m-1)!} \exp[-re^{-x} - mx] \quad where, \ r = \frac{B_{th}}{A_{av}}$$

 \square The standard deviation of g(x) is the time resolution starting from *m* electrons in unit

Sources that contributes to the intrinsic time resolution

$$g(x) = f(B(x)) \left| \frac{\mathrm{d}B}{\mathrm{d}x} \right| = \frac{r^m}{(m-1)!} \exp[-re^{-x} - mx] \quad where, \ r = \frac{B_{th}}{A_{av}}$$

3 main origins mainly contribute to the time resolution of the MRPC:

- \checkmark Uncertainty of the position where primary interactions take place
- ✓ Uncertainty of the energy deposited and the number of ionized electrons created
- ✓ Uncertainty of the avalanche multiplication

The Geant4 simulation framework built by Fuyue Wang:

*F. Wang, D. Han, Y. Wang, Y. Yu, Q. Zhang, B. Guo, Y. Li, A standalone simulation framework of the mrpc detector read out in waveforms, Journal of Instrumentation 13 (09) (2018) P09007.

Sources that contributes to the intrinsic time resolution

Experiments	StackNb	GapNb	$Thickness[\mu m]$	Working E [kV/cm]
ALICE	2	5	250	104
CBM	2	4	250	110
STAR	1	6	220	114
BESIII	2	6	220	103
Chrispin	4	6	160	135
THU1	4	8	104	159
THU2	1	6	250	109

The geometry effects on the intrinsic time resolution

□ To control the final avalanche size and avoid streamers, the effective Townsend coefficient times the gap thickness are fixed at $\alpha g = 28$

□ The possible choices for nMRPCs are only the designs with gap thickness below 140um

Part II Next-Gen MRPC R&D

nMRPC design

▶ Narrower gap width → fast charge dominant in the induced signal → Better timing resolution
▶ More gas gaps → Efficiency will be recovered

	Tsinghua nMRPC, 2018		
Gas Gap Width	128 um (fishing line)		
Number of Gas Gaps	4 stack x 8 layers $=$ 32		
Float Glass Thickness	230 um		
Readout strip	3 mm x 268mm(3 mm internal)		
Readout	differential, both ends		

nMRPC design

Setup

Next...

- ✓ Figured out the noisy channel(ch2)
- \checkmark Rebuilt the test platform, now gas fluxing
- Cosmic test for the 32-gaps MRPC
- **Considering the reason of the reflections**

Part III Progress of high time precision electronics ----From USTC

System Framework

Preamplification + High speed Waveform-to-Digital Conversion(WDC)

□ Analog Front-end Electronics(AFE) requirements:

✓ High bandwidth

Leading edge of the MRPC signals is $\sim 300 \text{ps} \rightarrow -3 \text{dB}$ bandwidth needs to be 1.16GHz

✓ High gain (20-40dB)

The amplitude of input signals to WDC >100mv

- ✓ Impedance matching
- ✓ Reach around 10ps time resolution

System Framework

- Preamplification + High speed Waveform-to-Digital Conversion(WDC)
- □ WDC requirements:
 - ✓ Sampling rate > 4Gsps
 - ✓ 14bits resolution ADC
 - \checkmark Sampling depth is 1024 points
 - ✓ Reach below 10ps time resolution

Chip selection

AFE Module Structure

Test in the lab

Next

- ✓ Two PhD students from USTC just came to Tsinghua.
- ✓ The 32-gap MRPC are ready for test.
- **Test the AFE module with MRPC detector.**
- **T**ake some data, analyze the performance of the MRPC and AFE.

Thank you for your attention!