
SoLID Subsystems

- Magnet, Target (doesn't count in this context)
- DAQ / Detectors (general)

SoLID CLEO SIDIS

- Power (HV, LV)
- Crate / Chassis selection
- Detector Subsystems
 - Ecal
 - Cherenkovs
 - GEMs
 - LA/FASPD

General Classes of Slow Controls

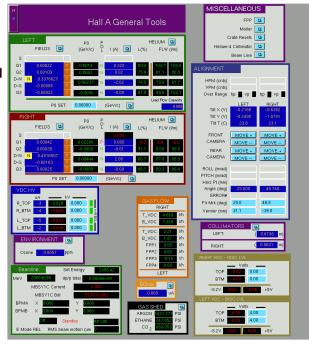
- DAQ Crates
 - power/temp monitoring and power cycle control
- High voltage
 - usual monitoring and control
- Low voltage power
 - monitoring only (remote control generally unneeded)

- Gas systems
 - monitor flow (general)
 - monitor pressure and temps (HGC)
- "Fast" Interlocks that cross system boundary
 - ie. trip HV if gas flow stops on GEMs

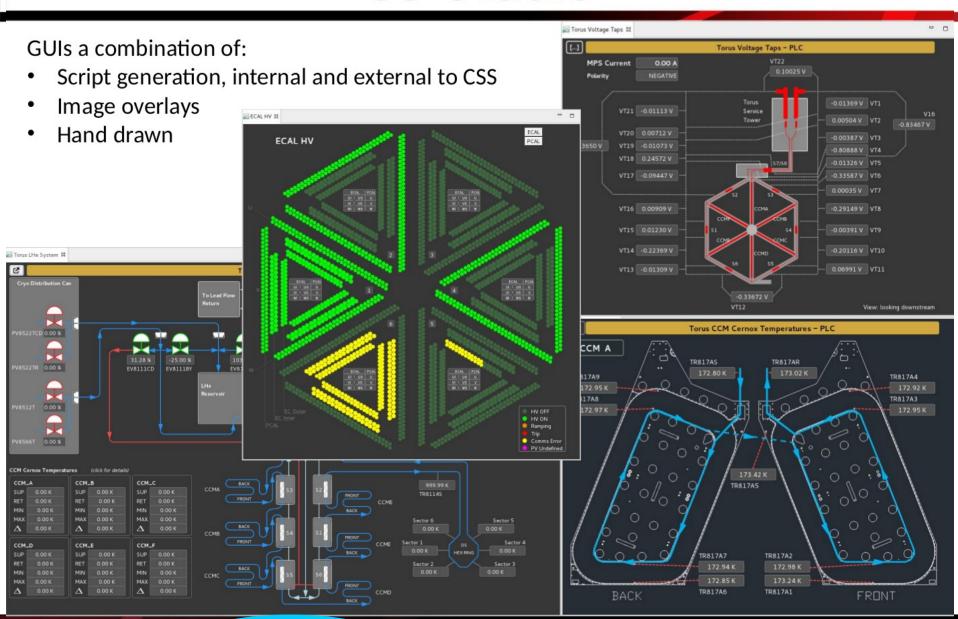
Detectors – General Requirements

- HV / LV controls, Temperature, Pressure GUIs with EPICS compatible logging (and alarms)
 - Appropriate crate selection makes this straight forward. Recommended systems have control, monitoring and alarm loops already implemented, no IOC/PLC development needed.
- LED Gain monitoring ("on/off") remote controls are straight forward
- "Flow-through" / open-loop gas systems (GEM, LGC)
 - Solved problem with pre-existing GUIs. Go with a standard MFC, etc.
- Heavy Gas Cerenkov gas system
 - Infrastructure can be complex, but slow controls are minimal since fills are done manually (and rarely) by an expert, then system is sealed during production.
 - Just needs online monitoring of pressures, temps—fairly straight forward
- Only "fast" interlock that crosses (sub-)system boundary is to trip HV if GEM flow stops. Straight forward with recommended HV systems.

Slow Controls System Overview


Detector	HV / LV Power	LED flasher/ pulser	DAQ Crate Monitoring/ Control	Gas System Type	Temp Monitoring	Flow	Pressure	Fast Interlock	Comments
GEMs	х		Х	Flow through		Х		Х	75/25 Ar:CO2 mix; HV interlock w/ flow
LA/FA SPD	Х	?	Х						
ECal	Х	?	Х						
Light Gas Cerenkov	X	Х	X	Flow through		Х			1 atm(abs); CO2, N2
Heavy Gas Cerenkov	Х	Х	X	Fill & Seal	X	Х	Х		1.5–1.7 atm(abs) C4F10 or similar

• FIXME:


- Not sure of LED for SPDs and ECal?

Frontend GUIs

- EDM (MEDM) / JTABS
- Forward-port of JLab's 6 GeV EPICS screens
- Still developed, but dated
- Control Systems Studio
 - http://controlsystemstudio.org/
 - Eclipse-based toolkit designed for systems like ours
 - SNS, BNL, FRIB, DESY using this system
 - JLab: Hall D (in use), Hall B (in use), Hall C (in use)
 - Now migrating to **Phoebus** (replacing Eclipse UI framework; same idea)
- Will enforce standards across systems
 - Avoid LabView
 - Avoid custom/proprietary code as much as possible
 - if not possible, provide EPICS interface for integration

CS-Studio

Summary (Slow Controls)

- Even with component standards enforced, and fairly modest requirements, slow controls for project on this scale is still significant
 - Hall B → 2+ FTE (professionals) for ~2 years (6 people made significant contributions)
- Standardization and cross-system oversight is critical prior to purchase to avoid issues (CAM?)
 - Ensure EPICS and other low level interface support is present and to spec
 - Avoid home-built and proprietary software where possible
 - Identify and communicate system needs that may cross sub-system boundaries
 - EPICS will be our common API/Protocol
- Maintainable Frontend GUIs/software require sufficient time and professional software developers
 - Control Systems Studio (CSS) / Pheobus framework is recommendation

Backup Slides

EPICS

• Experimental Physics and Industrial Control System

- http://www.aps.anl.gov/epics/
 - Open source, actively developed, lots of users
 - Based on C; APIs available for Java, Python, LabView, etc...
- Covers both input/output controllers (IOCs) that do the real work
 - *ie.* poll for and respond to data in real time
 - publish data for other systems to consume
 - IOCs can be single board computers running vxWorks, embedded devices that supprt the EPICS protocols, or 'softIOCs' which are applications that can run under conventional OSes (linux, etc)

Main slow controls 'backend' used at JLab

- A lot of expertise in Accel Div. that we can leverage
 - However, we need to schedule (and budget for) the developer time well in advance!
- Archiving of slow controls data can be integrated with existing (Accel)
 MYA Archiver