SoLID SIDIS-NH₃ Experiment Studies

Vladimir Khachatryan Physics Department, Duke University

SoLID Simulation Meeting, 7 April 2020

- The NH₃ target polarization is required to be higher than 70% in SoLID
- > Due to the large magnetic field in the transverse direction, there will be a different sort of background compared to that of the low field He³ experiment
- > As a result, a very high rate of charged particles will be localized in a very narrow region of the acceptance
- We refer to this strong background as sheet-of-flame
- > To handle it and to avoid any damage to the apparatus, detector/sub-detector sectors in the direct line-of sight of any sheet-of-flame should be shielded and/or turned off during the proton experiment

The purpose of the studies

- > We need to look at all the sheets-of flame very carefully, in order to figure out the best way for shielding and/or turning off those detector sectors
- > We use the eDIS generator and full Geant4 simulations for acceptance studies. Afterwards, we will also look at the trigger and more on the background.
- > We also use built-in flux hit processing for the sheets-of-flame near the real detectors, in order to record charged particles, which enter or leave these real detectors
- Each sheet-of-flame has a unique ID for its identification
- > But first, we look at the electrons (rate) which reach the FAEC and LAEC as well as the GEM (in the SoLID-SIDIS setup)
- > As in the case of the proton target, the geometry is more complicated, we need to look at plots, which include the X and Y coordinates as well

Let's now look at the Momentum P (in GeV/c) of electrons vs. the radius R (in cm)

> We are looking at the azimuthal angle phi (in deg) vs. X (in cm)

> We are looking at the azimuthal angle phi (in deg) vs. Y (in cm)

> We are looking at Y (in cm) vs. X (in cm)

Now let's look at plots, which have the sheet-of-flame cuts implemented

Totally there are thirteen cuts for the following subsystems:

Six layers of GEM, LGC, HGC, FASPD, LASPD, MRPC, FAEC, LAEC

> The electron Rates in the plots are given in Hz

10

> The electron Rates in the plots are given in Hz

11

- > Now let's take the ratio between the Rate from a case when only one cut is implemented and the Rate from the case when no cut is implemented (shown in the third row of the first table below)
- These ratios are shown in the next two slides, but here we also show some Rate numbers

for NH ₃ Rates in kHz	All electrons reach FAEC and GEM	All electrons reach LAEC and GEM	Q ² >1 GeV/c electrons reach FAEC and GEM	Q ² >1 GeV/c electrons reach LAEC and GEM
All sheet-of- flame cuts for all subsystems	44.6	15.7	15.4	2.9
No sheet-of- flame cuts implemented	47140.5	1676	21.2	3.6

for He ³ Rates in kHz	All electrons reach FAEC and GEM	All electrons reach LAEC and GEM	Q ² >1 GeV/c electrons reach FAEC and GEM	Q ² >1 GeV/c electrons reach LAEC and GEM
	96	15.9	65.7	12.4

> And here we have each a cut ID corresponding to each subdetector shown below.

> The ratio of the Rates are shown in the second table

Case 21		detector_ID=2 (C)		subdetector_ID=1 (LGC)		
Case 22		detector_ID=2 (C)		subdetector_ID=2 (HGC)		
Case 51		detector_ID=5 (SPD)		subdetector_ID=1 (FASPD)		
Case 52		detector_ID=5 (SPD)		subdetector_ID=2 (LASPD)		
Case 31		detector_ID=3 (EC)		subdetector_ID=1 (FAEC)		
Case 32		detec	tor_ID=3 (EC)	subdetector_ID=2 (LAEC)		
	Ratio of the Rates	All electrons reach FAEC and GEM		All electrons reach LAEC and GEM	Q ² >1 GeV/c electrons reach FAEC and GEM	Q ² >1 GeV/c electrons reach LAEC and GEM
	Case 21	0.325		1.000	0.844	1.000
	Case 22	0.00116		1.000	0.774	1.000
	Case 51	0.326		1.000	0.817	1.000
	Case 52	1.000		0.113	1.000	0.831
	Case 31	0.326		1.000	0.826	1.000
	Case 32 1.000		0.113	1.000	0.829	

Case 11		detector_ID=1 (GEM)		<pre>subdetector_ID=1 (GEM, layers)</pre>	
Case 12		detector_ID=1		subdetector_ID=2	
Case 13		detector_ID=1		subdetector_ID=3	
Case 14		detector_ID=1		subdetector_ID=4	
Case 15		detector_ID=1		subdetector_ID=5	
Case 16		detector_ID=1		subdetector_ID=6	
Ratio of the Rates	All electrons reach FAEC and GEM		All electrons reach LAEC and GEM	Q ² >1 GeV/c electrons reach FAEC and GEM	Q ² >1 GeV/c electrons reach LAEC and GEM
Case 11	1.000		0.0208	1.000	0.889
Case 12	0.00328		0.0462	0.890	0.890
Case 13	0.00446		0.148	0.890	0.891
Case 14	0.00712		0.942	0.890	0.891
Case 15	0.00246		1.000	0.843	1.000
Case 16	0.325		1.000	0.844	1.000
All sheets of flames cuts 0.00154 14 for GEM		0.010	0.792	0.863	

- > We will make other plots, which will include the X and Y dependence, to uncover more information on the configuration geometry
- > We should also do some fine-tuning for the Rate numbers after we have new full GEANT4 simulation results, plus also the results from upcoming trigger and background studies
- > In addition, we will make similar plots for LGC and HGC as well as for FASPD and LASPD
- All such (acceptance) and additional (trigger, background) studies will give us a good sense of a sheets-of-flame behavior and their effects, and how to shield and turn off the detector sections during the SIDIS-proton experiment

Backups

at (Q² > 1 GeV/c) reach FAEC and GEM

at (Q² > 1 GeV/c) reach FAEC and GEM

all electrons reach FAEC and GEM

at ($Q^2 > 1$ GeV/c) reach FAEC and GEM

all electrons reach FAEC and GEM

at (Q² > 1 GeV/c) reach FAEC and GEM

all electrons reach FAEC and GEM

at (Q² > 1 GeV/c) reach FAEC and GEM

The plots are from the He³ target configuration simulations

The plots are from the He³ target configuration simulations

The plots are from the He³ target configuration simulations

