Update on PVDIS Motivation

P. A. Souder Syracuse University

Outline

- Theory of PVDIA.
- SMEFT, C_{1q} and C_{2q} and PVDIS.
- PVDIS as a probe of hadronic structure.

PVES and Contact Interactions

$$\begin{split} ^{V} &= \frac{G_{F}}{\sqrt{2}} [\overline{e} \gamma^{\mu} \gamma_{5} e (\boldsymbol{C_{1u}} \overline{u} \gamma_{\mu} u + \boldsymbol{C_{1d}} \overline{d} \gamma_{\mu} d) \\ &+ \overline{e} \gamma^{\mu} e (\boldsymbol{C_{2u}} \overline{u} \gamma_{\mu} \gamma_{5} u + \boldsymbol{C_{2d}} \overline{d} \gamma_{\mu} \gamma_{5} d) \\ &+ \boldsymbol{C_{ee}} (e \gamma^{\mu} \gamma_{5} e \overline{e} \gamma_{\mu} e) \end{split}$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^{2} \theta_{W} \approx -0.19$$

$$C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^{2} \theta_{W} \approx 0.35$$

$$C_{2u} = -\frac{1}{2} + 2 \sin^{2} \theta_{W} \approx -0.04$$

$$C_{2d} = \frac{1}{2} - 2 \sin^{2} \theta_{W} \approx 0.04$$

$$C_{ee} = \frac{1}{2} - 2 \sin^{2} \theta_{W} \approx 0.02$$

new physics
$$\mathcal{L}_{eff}^{BSM} = \frac{g^{2}}{\Lambda^{2}} \sum_{i,j=L,R} \eta_{ij}^{eff} \overline{e}_{i} \gamma_{\mu} e_{i} \overline{q}_{j} \gamma^{\mu} q_{j}$$

$$+ \int_{1} \int_{2} \int_{2} \int_{2} \int_{2} g^{2} \sum_{i,j=L,R} \eta_{ij}^{eff} \overline{e}_{i} \gamma_{\mu} e_{i} \overline{q}_{j} \gamma^{\mu} q_{j}$$

$$= g^{2} \sum_{i,j=L,R} \left(\frac{1}{\Lambda_{ij}^{ef}}\right)^{2} \overline{e}_{i} \gamma_{\mu} e_{i} \overline{f}_{j} \gamma^{\mu} f_{j}$$

Theory of PVDIS

At high x, A_{iso} becomes independent of pdfs, x & W, with well-defined SM SoLID Collaboration prediction for Q² and y 4

SMEFT to All Order

Wilson coefficient(ie.coupling constants)

d = dimension of the operator

 $\mathcal{O}_{d}^{ij} = \overline{e}_{i}\gamma_{\mu}e_{i}\overline{f}_{j}\gamma^{\mu}f_{j}$ $e_{L/R} = \frac{1}{2}(1\mp\gamma^{5})\psi_{e}$

 $\mathcal{L} = \sum \sum \frac{C_d^{ij}}{\Lambda^{4-d}} \mathcal{O}_d^{ij}$

 $\mathcal{O}_{d}^{ij} = LL_f, \ LR_f, \ RL_f, \ RR_f$

e = electron spinor f = quark spinor

 LL_f is shorthand

Most common for SMEFT **Couplings: Warsaw Basis** $C_{lq}^{(3)}: \frac{1}{2}(LL_u - LL_d); \quad C_{lq} = C_{lq}^{(1)}: \frac{1}{2}(LL_u + LL_d)$ C_{lu} : LR_u ; C_{ld} : LR_d ; C_{eu} : RR_u ; C_{ed} : RR_d ; C_{eq} : $RL_u + RL_d$ 61 d=6; 993 d=8 independent couplings $g_{AV}^{eu} = \frac{1}{2} \left[C_{lq}^{(3)} - C_{lq} - C_{eu} + C_{eq} + C_{eu} \right]$ $g_{VA}^{eu} = \frac{1}{2} \left[C_{lq}^{(3)} - C_{lq} + C_{eu} - C_{eq} + C_{eu} \right]$

Go to PVES Basis

$$VV = +LL + LR + RL + RR$$

$$C_{2}'s \qquad VA = -LL + LR - RL + RR$$

$$AV = -LL - LR + RL + RR$$

$$AA = +LL - LR - RL + RR$$

Physical Processes

$$\mathcal{A} = (\mathcal{A}_{SM} + \frac{\mathcal{A}_6}{\Lambda^2} + \frac{\mathcal{A}_8}{\Lambda^4} \dots)$$

For PVES : $A_{PV} \sim \mathcal{A}_{EM} \times \mathcal{A}$
For Drell – Yan : $\sigma_{BSM} \sim (\mathcal{A}_6)^2 + \mathcal{A}_{SM} \times \mathcal{A}_8$

PVES (interference effect) is only sensitive to d=6: $1/\Lambda^2$. LHC (large s) sees d=6 but is dominated by $1/\Lambda^4$.

LHC Drell-Yan Analysis

$$\mathcal{L}_{eff} = \frac{g^2}{\Lambda^2} \sum_{i,j=L,R} \eta_{ij}^f \overline{e}_i \gamma_\mu e_i \overline{f}_j \gamma^\mu f_j$$
$$g^2 = 4\pi; \text{ The largest } |\eta_{ij}^f| = 1$$
$$\text{Only dimension} - 6 \text{ operators}$$
$$\text{Choose } \eta_{ij}^f; \text{ Fit to } \Lambda$$
$$\text{Better : set } \sum (\eta_{ij}^f)^2 = 1$$

SoLID Collaboration

Lepton Pair Production Cross Sections

$$\frac{d\sigma}{d\Omega} \left(q_L \overline{q}_R \to e_L^- e_R^+ \right) = \frac{\alpha^2}{4s} (1 + \cos\theta)^2 \left| Q_q - rL_q L_e - \frac{s}{\alpha (\Lambda_{LL}^{eq})^2} \right|^2$$

$$\frac{d\sigma}{d\Omega} \left(q_L \overline{q}_L \to e_L^- e_L^+ \right) = \frac{\alpha^2}{4s} (1 - \cos\theta)^2 \left| Q_q - rL_q R_e - \frac{s}{\alpha (\Lambda_{LR}^{eq})^2} \right|^2$$

$$\frac{d\sigma}{d\Omega} \left(q_R \overline{q}_L \to e_R^- e_L^+ \right) = \frac{\alpha^2}{4s} (1 + \cos\theta)^2 \left| Q_q - rR_q R_e - \frac{s}{\alpha (\Lambda_{RR}^{eq})^2} \right|^2$$

$$\frac{d\sigma}{d\Omega} \left(q_R \overline{q}_R \to e_R^- e_R^+ \right) = \frac{\alpha^2}{4s} (1 - \cos\theta)^2 \left| Q_q - rR_q L_e - \frac{s}{\alpha (\Lambda_{RL}^{eq})^2} \right|^2$$

Two Types of Terms

1.Interference ~ $1/\Lambda^2$ 2. Direct Terms ~ $1/\Lambda^4$

(Both d=6 and d=8)

Since LHC is unpolarized, It measures the sum of all Four cross sections

Direct Terms Set Limits on PV Couplings

Direct terms in cross Section measure: Convert from LR terms To VA terms:

 $\left(\frac{1}{\Lambda_{II}^{eq}}\right)^4 + \left(\frac{1}{\Lambda_{ID}^{eq}}\right)^4 + \left(\frac{1}{\Lambda_{DI}^{eq}}\right)^4 + \left(\frac{1}{\Lambda_{DD}^{eq}}\right)^4 = 1$ $\left(\frac{1}{\Lambda_{VV}^{eq}}\right)^4 + \left(\frac{1}{\Lambda_{VA}^{eq}}\right)^4 + \left(\frac{1}{\Lambda_{AV}^{eq}}\right)^4 + \left(\frac{1}{\Lambda_{AV}^{eq}}\right)^4$

Direct terms therefore set upper bounds in all of the C₁'s and C₂'s (Interference terms are relatively insensitive to PV.)

 $\Lambda_{ij} > 40 \ TeV \ from \ LHC$: Direct terms set limits > 20 TeV if d=8 neglected (LHC experiments fit only to a single Λ .)

Sensitivity to Λ in Composite Models (LHC)

 $2\delta C_{1u} \text{--} \delta C_{1d}$

 C_{1q} known from APV, Qweak, and P2

Sensitive to very large values of Λ, comparable to LHC data.

LHC pp→e⁺e⁻ data includes dimension 8 operators; SoLID is limited to dimension 6.

Lepton Pair Production form ATLAS

Figure 1: Distributions of (a) dielectron and (b) dimuon reconstructed invariant mass $(m_{\ell\ell})$ after selection, for data and the SM background estimates as well as their ratio before and after marginalisation. Selected Z'_{χ} signals with a pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in $\log(m_{\ell\ell})$ and the shaded band in the lower panels illustrates the total systematic uncertainty, as explained in Section 7. The data points are 6/8/shown together with their statistical uncertainty.

SoLID and the Low Energy PVES Program

- Measure each of the coupling constants as precisely as possible.
- The C₂'s (g_{VA} 's) are the most difficult to measure.
 - Large, uncalculable radiative corrections present in coherent processes.
- PVDIS is the most promising approach to measure one combination for the the C_2 's.

 $2C_{1u}$ - C_{1d}

Is there new physics below 2 TeV that LHC has failed to uncover?

- Leptophobic Z'?
- Z' with exotic decays that make it wide?
- Dark Z'

Note: $A_Z/A_\gamma \approx Q^2$ for $Q^2 \ll MZ$; : $A_Z/A_\gamma \approx 1$ for $Q^2 \gg MZ$ Since electron vertex must be vector, the Z' cannot couple to the C_{1q} 's if there is no electron coupling: can only affect C_{2q} 's

Phys.Lett. B712 (2012) 261-265

Weak angle shift for Low Q² due to Dark Z'

For the Low-Q² Parity Test (measuring Weak angle), we can use

(i) Atomic Parity Violation (Cs, ...)

(ii) Low-Q² PVES (E158, Qweak, MESA P2, Moller, SoLID...)

6/8/2independent of Z' decay BR (good for both wisibly/invisibly decaying Z').

New Models Extend Q² Range

FIG. 3. Effective weak mixing angle running as a function of Q^2 shift (the blue band) due to an intermediate mass Z_d for (a) $m_{Z_d} = 15$ GeV and (b) $m_{Z_d} = 25$ GeV for 1 sigma fit to $\varepsilon \delta'$ in Eq. (12). The lightly shaded area in each band corresponds to choice of parameters that is in some tension with precision constraints (see text for more details).

3

PVIDS with the Proton

Recent d/u Analysis Including Fermilab Data

Could improved d/u determination improve W mass measurement and hence $\sin^2 \theta_W$?

Marathon 3He/3H data taken at Jlab; should be released soon. Will provide a real measure of possible impact.

Summary

- SMEFT is main motivation, now and then.
- LHC Drell-Yan dominated by terms of order $1/\Lambda^4$
- Leptophobic Z's are of interest at the LHC.
- d/u more interesting.