
SoLID Slow Controls

Brad Sawatzky

June 8, 2020

Overview
● Slow controls for project on this scale is significant

– Hall B → 2+ FTE (professionals) for ~2 years (6 people made significant contributions)

● Think about and document slow control needs
– Feed your requirements/design specs to <brads@jlab.org>

● I'm happy to support research and answer questions

– Everything will be more $$$ and more complicated than you may expect...

● Standardize, standardize, standardize
– Avoid investing time in 'quick' solutions for local implementation. Stick with the standards –

steeper learning curve, but it'll save time in the long run (build trained people as well as
software).

– Hacks and workarounds tend to become 'permanent' and unintended dependencies get baked in –
good to avoid these.

– Proper hardware selection will minimize custom IOC/PLC development.

● EPICS should be our common API/Protocol
● Frontend GUIs/software take time and $$ to develop

– Control Systems Studio (CSS) framework is recommended

– Software maintainability is at least as important as features/functions

mailto:brads@jlab.org

Detectors – General Requirements
● HV / LV controls, Temperature, Pressure GUIs with EPICS

compatible logging (and alarms)
– Appropriate crate selection makes this straight forward. Recommended systems have

control, monitoring and alarm loops already implemented, no IOC/PLC development
needed.

● LED Gain monitoring (“on/off”) remote controls are straight forward
● “Flow-through” / open-loop gas systems (GEM, LGC)

– Solved problem with pre-existing GUIs. Go with a standard MFC, etc.

● Heavy Gas Cerenkov gas system
– Infrastructure can be complex, but slow controls are minimal since fills are done manually

(and rarely) by an expert, then system is sealed during production.

– Just needs online monitoring of pressures, temps—fairly straight forward

● Only “fast” interlock that crosses (sub-)system boundary is to trip HV
if GEM flow stops. Straight forward with recommended HV systems.

Frontend GUIs
● EDM (MEDM) / JTABS

– Forward-port of JLab's 6 GeV EPICS
screens

– Still developed, but dated

● Control Systems Studio
– http://controlsystemstudio.org/

– Eclipse-based toolkit designed for systems like ours
● SNS, BNL, FRIB, DESY using this system
● JLab: Hall D (in use), Hall B (in use), Hall C (in use)

– Now migrating to Phoebus (replacing Eclipse UI framework; same idea)

● Will enforce standards across systems
– Avoid LabView

– Avoid custom/proprietary code as much as possible
● if not possible, provide EPICS interface for integration

http://controlsystemstudio.org/
https://controlssoftware.sns.ornl.gov/css_phoebus/

Slow Controls System Overview

Detector
HV / LV
Power

LED
flasher/
pulser

DAQ Crate
Monitoring/

Control

Gas
System

Type

Temp
Monitoring Flow Pressure

Fast
Interlock Comments

GEMs x x Flow
through

x x 75/25 Ar:CO2 mix; HV
interlock w/ flow

LA/FA SPD x x x

ECal x x x

Light Gas
Cerenkov

x x x Flow
through

x 1 atm(abs); CO2, N2

Heavy Gas
Cerenkov

x x x Fill &
Seal

x x x 1.5–1.7 atm(abs) C4F10
or similar

● HGC gas system design is not well defined
● MRPC is not listed here (out of scope)

– MPRC gas system on this scale is likely a big deal

Summary (Slow Controls)
● Even with component standards enforced, and fairly modest

requirements, slow controls for project on this scale is still
significant
– Hall B → 2+ FTE (professionals) for ~2 years (6 people made significant

contributions)

● Standardization and cross-system oversight is critical prior to
purchase to avoid issues
– Direct/Authoritative oversight by CAM?

– Ensure EPICS and other low level interface support is present and to spec

– Avoid home-built and proprietary software where possible

– Identify and communicate system needs that may cross sub-system boundaries

– EPICS will be our common API/Protocol

● Maintainable Frontend GUIs/software require sufficient time and
professional software developers
– Control Systems Studio (CSS) / Pheobus framework is recommendation

Backup Slides

EPICS
● Experimental Physics and Industrial Control System

– http://www.aps.anl.gov/epics/
● Open source, actively developed, lots of users
● Based on C; APIs available for Java, Python, LabView, etc...

– Covers both input/output controllers (IOCs) that do the real work
● ie. poll for and respond to data in real time
● publish data for other systems to consume
● IOCs can be single board computers running vxWorks, embedded devices that

supprt the EPICS protocols, or 'softIOCs' which are applications that can run under
conventional OSes (linux, etc)

● Main slow controls 'backend' used at JLab
– A lot of expertise in Accel Div. that we can leverage

● However, we need to schedule (and budget for) the developer time well in advance!

– Archiving of slow controls data can be integrated with existing (Accel)
MYA Archiver

http://www.aps.anl.gov/epics/

	Slide 1
	Slide 2
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

