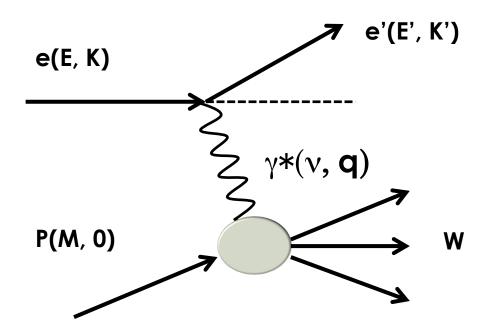
A Precision Measurement of Inclusive g₂, d₂ with SoLID on a Transversely Polarized ³He Target at 8.8 and 11 GeV

Run-Group Proposal in parallel to E12-10-006

Spokesperson: Chao Peng¹ and Ye Tian² E12-10-006 collaboration and SoLID collaboration


06/09/2020

- Physics Motivation
- Experiment
- Expected Results
- Summary

1: Argonne National Laboratory, Argonne, IL;

2: Syracuse University, Syracuse, NY

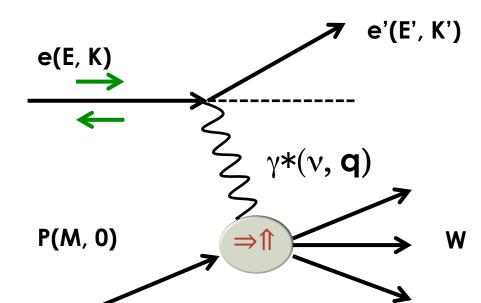
Inclusive Electron Scattering

Q²:Four-momentum transfer

x : Bjorken variable(= $Q^2/2Mv$)

ν : Energy transfer

M: Nucleon mass


W: Final state hadronic mass

Inclusive unpolarized cross section:

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) tan^2 \frac{\theta}{2} \right]$$

spin averaged structure functions

Inclusive Electron Scattering

Q²:Four-momentum transfer

x : Bjorken variable(= $Q^2/2Mv$)

ν : Energy transfer

M: Nucleon mass

w W: Final state hadronic mass

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{Mott} \begin{bmatrix} \frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) tan^2 \frac{\theta}{2} \\ + \gamma g_1(x, Q^2) + \delta g_2(x, Q^2) \end{bmatrix}$$

spin dependent Structure Function

Spin Structure Function in Parton Model

 \square g₁ related to the polarized parton distribution functions

$$g_1 = \frac{1}{2} \sum_{i} e_i^2 \, \Delta q_i(x) \qquad \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

 \square g₂ is zero in the naive parton model non-zero value carries information of quark-gluon interaction Ignoring quark mass effect of order $O(m_a/\Lambda_{OCD})$

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + g_2(x,Q^2)$$

4

Spin Structure Function in Parton Model

 \square g₁ related to the polarized parton distribution functions

$$g_1 = rac{1}{2} \sum_i e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

 \square g₂ is zero in the naive parton model non-zero value carries information of quark-gluon interaction

Ignoring quark mass e ect of order $O(m_q/\Lambda_{\rm QCD})$

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g}_2(x,Q^2)$$

• leading twist related to g_1 by Wandzura-Wilczek relation

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

related to amplitude for scattering off asymptotically free quarks

Spin Structure Function in Parton Model

 \square g₁ related to the polarized parton distribution functions

$$g_1 = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x)$$
 $\Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$

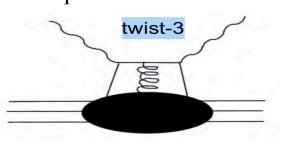
 \square g₂ is zero in the naive parton model non-zero value carries information of quark-gluon interaction

Ignoring quark mass e ect of order $O(m_q/\Lambda_{\rm QCD})$

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g}_2(x,Q^2)$$


• leading twist related to g_1 by Wandzura-Wilczek relation

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$


$$\bar{g}_2(x,Q^2) = -\int_x^1 \frac{\partial}{\partial y} \left[\frac{m_q}{M} h_T(y,Q^2) + \zeta(y,Q^2) \right] \frac{\mathrm{d}y}{y}$$

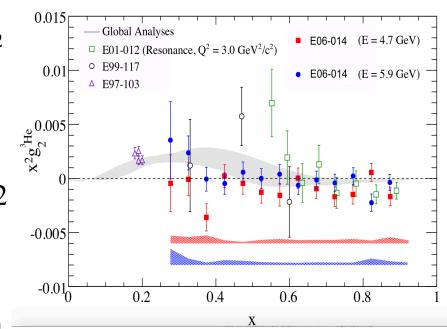
quark transverse momentum contribution

twist-3 part which arises from quarkgluon interactions

related to amplitude for scattering off asymptotically free quarks

quark-gluon interaction and the quark mass effects

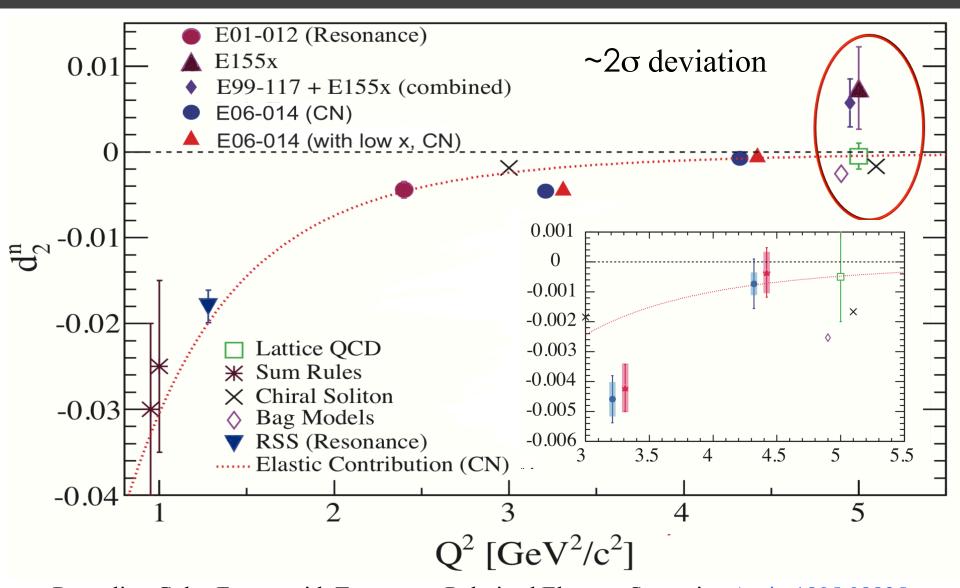
d₂: twist-3 matrix element


d₂: the x² moment of $g_2(x,Q^2)$, twist-3 matrix element Sensitive to large-x behavior

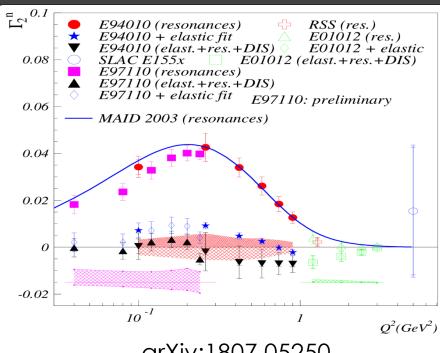
$$d_2(Q^2) = 3 \int_0^{\infty} x^2 [g_2(x, Q^2) - g_2^{WW}(x, Q^2)] dx$$
$$= \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

- ✓ Calculable on the Lattice.
- ✓ A clean way to access twist-3 contribution, quantify q-g correlations

Existing Neutron g₂ Data


- First precise measurement of neutron g_2 from SLAC, averaged $Q^2 \approx 5 \text{ GeV}^2$
- Measurement form Jefferson Lab: E<6GeV
- The ongoing Hall C d^n_2 E12-06-121, 0.2 < x < 0.95 and 2.5 $< Q^2 < 7$ GeV², SHMS and upgraded HMS with six kinematic settings.
- We propose to measure g_2^n at x>0.1 and $1.5 < Q^2 < 10 \text{ GeV}^2$, SoLID

Graph Reference arXiv:1603.03612v3


³ He	g_2^n, d_2^n, Γ_2^n	$0.5 \le W \le 2.5 \; GeV$	$0.1 \le Q^2 \le 0.9$	JLAB E94–010 [29]
³ He	g_2^n	x = 0.2	$0.57 \le Q^2 \le 1.34$	JLAB E97–103 [30]
³ He	g_2^n, d_2^n	x = 0.33, 0.47, 0.6	2.7,3.5,4.8	JLAB E99–117 [2]
³ He	g_2^n	x < 0.1	$0.035 \le Q^2 \le 0.24$	JLAB E97–110 [31]
³ He	g_2^n, d_2^n	$0.25 \le x \le 0.9$	3.21,4.32	JLAB E06–014 [14]
³ He	g_2^n, d_2^n	$0.55 \le x \le 0.9$	$0.7 \le Q^2 \le 4.0$	JLAB E01–012 [33]

Existing Neutron d₂ Data

Revealing Color Forces with Transverse Polarized Electron Scattering Arxiv:1805.08835

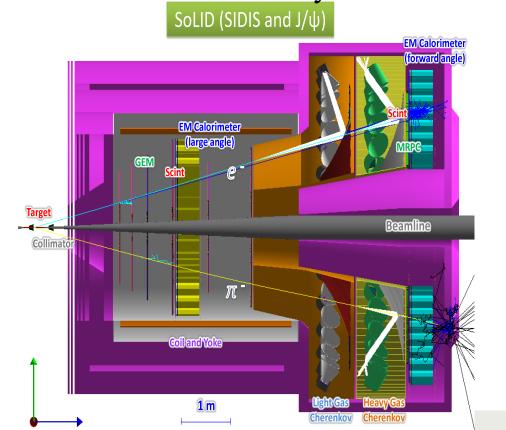
Test the Burkhardt-Cottingham (BC) Sum Rule

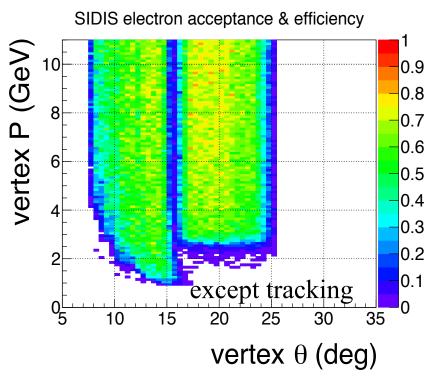
arXiv:1807.05250

BC = Measured + low x + Elastic

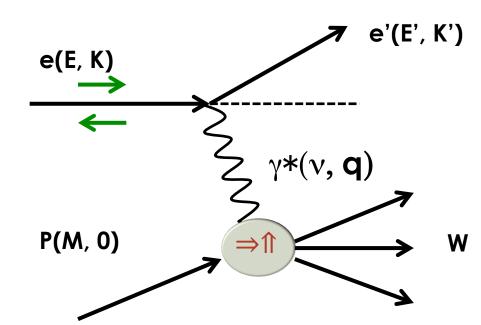
Measured: Measured x-range

low-x: refers to unmeasured low x part of the integral. Assume $g_2 = g_2^{WW}$


Elastic: From well know elastics form Factors


$$\Gamma_2 = \int_0^1 g_2(x) dx = 0$$

- Validity conditions:
- ✓ g_2 is well-behaved, Γ 2 is finite
- ✓ g_2 is not singular at $x_{Bi} = 0$
- It is verified from world data at $0 < Q^2 < 5 \text{ GeV}^2$
- Elastic and the inelastic contributions to the wrist moment of g₂ cancel for low and moderate Q²


Experiment: SIDIS Transversely Polarized ³He (E12-10-006)

- Use the existing proposed experimental setups w/o changes
- JLab Hall A polarized ³He target
- High in-beam polarization $\sim 60\%$
- Two Beam energies: 11 GeV and 8.8 GeV
- Polarized luminosity with 15uA current: 1e³⁶ cm⁻²s⁻¹

Extract 92 from Cross Section Differences

Q²:Four-momentum transfer

x : Bjorken variable (= $Q^2/2Mv$)

ν : Energy transfer

M: Nucleon mass

W: Final state hadronic mass

$$\mathbf{L} \frac{d^2\sigma}{dE'd\Omega}(\downarrow \uparrow \uparrow -\uparrow \uparrow \uparrow) = \frac{4\alpha^2}{MQ^2} \frac{E'}{vE} [(E + E'cos\theta)g_1(x, Q^2) - 2Mxg_2(x, Q^2)]$$

SoLID SIDIS Longitudinally Polarized 3He (E12-11-007)

$$\mathbf{T} \frac{d^2\sigma}{dE'd\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^2{E'}^2}{MQ^2v^2E}sin\theta\cos\phi_{rela}\left[g_1(x,Q^2) + \frac{2E}{v}g_2(x,Q^2)\right]$$

SoLID SIDIS Transversely Polarized 3He (E12-10-006)

Expected Event Rates

Rate (kHz)	EC+LGC+SPD
Ecal 7 modules	3He+up+ down widow
FA e ⁻	59+1.15+1.8
FA hadron no e⁻	28.6+3.9+5.6
LA e⁻	4.1+3.6+2.6
LA hadron no e⁻	7.7+6.5+3.8
FA MIP (hadron)	8013+2591+3887
trigger	
SIDIS coincidence	31.2
Hadron coincidence	14.7+2.52+2.61=19.83
Total rate	<85 kHz

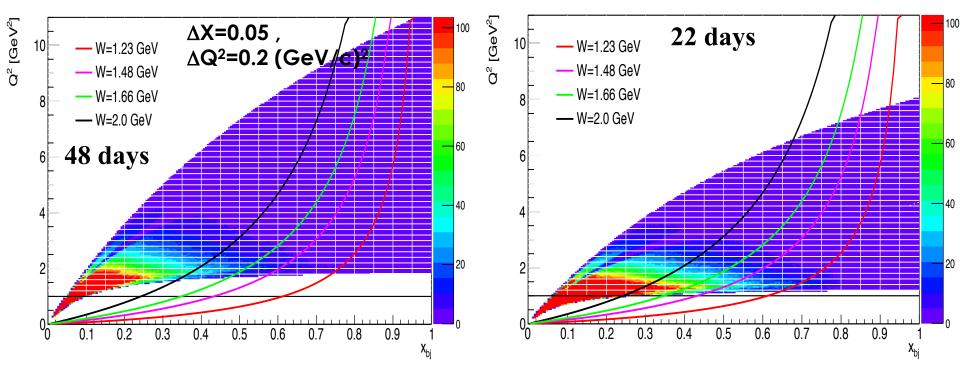
48 days 11 GeV 21 days 8.8 GeV **DAQ limit** 100kHz

Coincident trigger

20 - 30% fluctuation

>15<u>k</u>Hz

Free prescaled single electron trigger


FA+LA single electron trigger rate: 103kHz/10=10.3KHz Projection

Reusable random coincidence trigger rate:

54kHz+15kHz=69kHz, which is equivalent to 103kHz/2

Kinematic Coverage

- Generated inclusive QE+resonance+DIS events:
 The W<3 GeV Peter Bosted fit
 The W>3 GeV world PDF sets
- GEMC+detector acceptance+detector efficiency
 8.8GeV beam

* Measure **neutron** spin structure function $\mathbf{g_2}$ (\mathbf{x} , $\mathbf{Q^2}$) at momentum transfer $1.5 < Q^2 < 9.5$ GeV² and Bjorken x = 0.1 < x < 0.9. For $Q^2 > 8.5$ Ge², we will measure the $\mathbf{x} > 0.6$ region.

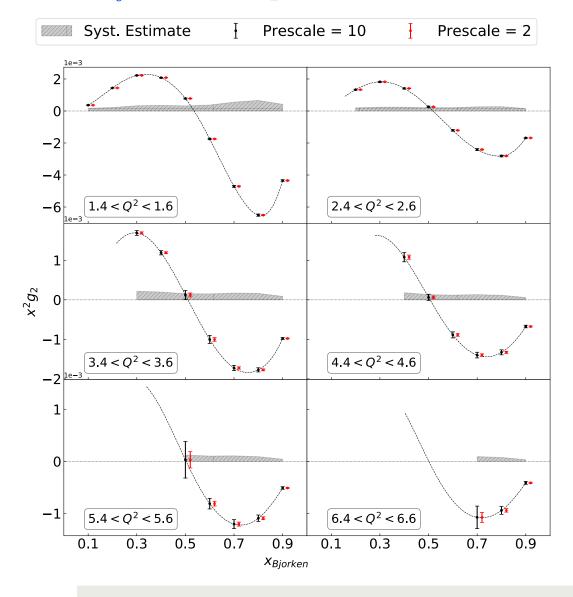
Systematic Error Estimation

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{\nu E}{(E - \nu)(2E - \nu)} \left[\Delta \sigma_{\parallel} + \tan \frac{\theta}{2} \Delta \sigma_{\perp} \right],$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{\nu^{2}}{2(E - \nu)(2E - \nu)} \left[-\Delta \sigma_{\parallel} + \frac{E + (E - \nu)\cos\theta}{(E - \nu)\sin\theta} \Delta \sigma_{\perp} \right]$$
Source Systematic Uncertainty

Source	Systematic Uncertainty			
Cross Sections				
Detector acceptance	5.0%			
Detector efficiencies	3.0%			
Target density	2.0%			
Beam charge	1.0%			
Background subtraction	3.0%			
Asymmetries				
Dilution effects	< 1.0%			
Beam polarization	< 2.0%			
Target polarization	3.0%			
Charge asymmetry	$< 10^{-4}$			
Pion asymmetry	$< 5 \times 10^{-4}$			
Unfolding Procedure				
Nuclear corrections	$\sim 5.0\%$			
Radiative corrections	$\sim 3.0\%$			
Physics Results				
Cross sections	< 10.0%			
g_2 syst.	$\sim 10^{-3} 10^{-4}$			
d_2 stat.	$\sim 3 \times 10^{-4}$			
d_2 syst. (11 GeV)	$\sim 5 \times 10^{-4}$			
d_2 syst. (8.8 GeV)	$\sim 8 \times 10^{-4}$			

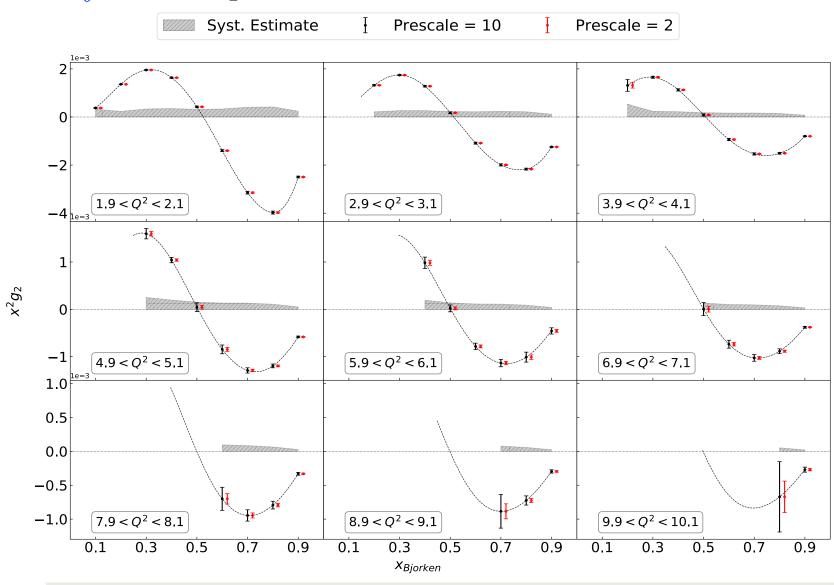
Dominate g2 systematic errors

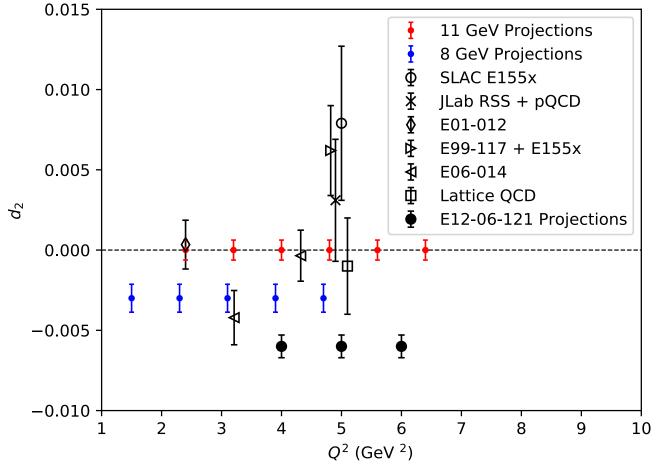

θ=8.5°~ 9.5° Elastic event at 2.2GeV 0.234 M events/hr

Nuclear Effects:

- Effective polarization approximation---- intermediate x values and at W above the resonance region
- Weak Binding Approximation----nucleon resonance region or at large x

Projections: x²g₂


Beam E_0 = 8.8 GeV, polarization 60%, Dilution 0.17


- F2 from New Muon Collaboration (NMC) parameterization
- $R = g_1^n/F_1^n$ from SLAC
- Errors:
- error bars ---- statisticerrors
- shadow regions----systematic error

Projections: x²g₂

Beam E_0 = 11 GeV, polarization 60%, Dilution 0.17

Projections: d₂

- ♦ Rescale factor "10"
- The x coverage requirement limits the d₂ projection to the region of Q 2 < 6.5 GeV.
 </p>

- \star $x_{min} > 0.40$ within the kinematic coverage to obtain the d_2 moments, and assigned 15% error for filling the unmeasured region.
- ❖ Both statistical and systematic uncertainties from the cross section difference measurements are propagated into the projections

Summary

- ◆We propose a run group measurement that runs simultaneously with SoLID E12-10-006 to measure the inclusive cross section difference for doubly polarized ³He scattering.
- ♦ The proposed measurement, combined with the longitudinally polarized 3 He data from E12-11-007, enable the precise extraction of $g^{n}_{2}(x, Q^{2})$ and $d^{n}_{2}(x, Q^{2})$ at x>0.1 and $1.5<Q^{2}<10$ GeV².
- The proposed dataset provides an opportunity to better understand the twist-3 matrix element $d^{n}_{2}(x, Q^{2})$ and hence the associated quark-gluon correlations within the neutron. Q^{2} evolution of d^{n}_{2} provide a direct test of Lattice QCD.

SoLID (SIDIS and J/ψ)

