SoLID SIDIS-NH₃ Studies (update)

Vladimir Khachatryan **Physics Department, Duke University**

SoLID Simulation Meeting

September 1, 2020

- > In the SoLID SIDIS-proton experiment, we will be measuring SSA/DSA in SIDIS using transversely polarized NH₃ target
- > We use the eDIS and Wiser generators, as well as full Geant4 simulations for the trigger, background and acceptance studies
- \succ We look at particle hit rate, which is based upon the material budget in the target
- During the Collaboration Meeting I had shown some preliminary rate numbers
- > Today I would like to show updated new numbers since some of them are now different compared to those shown previously

Reminder on SIDIS-NH₃ studies

$e + p -> e' + \pi^{+/-} + X$

- \succ The NH₃ target polarization is required to be higher than 70% with the spin flip in every few hours.
- Two Beam energies: 11 GeV and 8.8 GeV
- Total luminosity $5.95 \cdot 10^{35} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
- Beam current: 100nA
- The beam goes through 5T target magnetic field
- Density of the NH₃ target 0.819 g cm⁻³
- NH₃ target thickness 2.826 cm

Use the sheet-of-flame cuts

- Due to the large magnetic field in the transverse direction, there is a different kind of background compared to that of the low field He³ experiment
- > As a result, a very high rate of charged particles will be localized in a quite narrow region of the acceptance. We refer to this strong, specific type of background as sheet-of-flame
- In order to avoid any damage to the apparatus, the detector and sub-detector sectors in the direct line-of sight of any sheet-of-flame plane should be shielded and/or turned off during the NH₃ experiment

- Let's now look at the momentum P (in GeV/c) of electrons (reaching FAEC, LAEC and GEM) vs. the ϕ angle
- In the right plots, $Q^2 > 1$ (GeV/c)² cuts are also implemented for these sub-detectors

Electron energy – radius plots for FAEC

- Plots for the Energy (in GeV) of electrons vs. the radius R (in cm) on FAEC
- We have found the $Q^2 = 1$ (GeV/c)² lines and implement them as step functions in $\phi = 6^{\circ}$ bins from -180° to 180°. Totally there are sixty ϕ bins

Electron energy – radius plots for LAEC

Plots for the Energy (in GeV) of electrons vs. the radius R (in cm) on LAEC

We have found the $Q^2 = 1$ (GeV/c)² lines and implement them as step functions in $\phi = 6^{\circ}$ bins from -180° to 180°. Totally there are sixty ϕ bins

Electron Rate $(Q^2 > 1 (GeV/c)^2)$ on LAEC for NH₂, $90^\circ < \phi < 96^\circ$, Rate = 1.239901e+01

Electron Rate $(Q^2 > 1 (GeV/c)^2)$ on LAEC for NH₂, $150^\circ < \phi < 156^\circ$, Rate = 4.377383e+01

For FAEC, now we take the range $30^{\circ} < \phi < 138^{\circ}$ to put a ϕ -independent plain cut, since in the region $\phi > 138^{\circ}$ the trigger cut is also well visible.

at $(Q^2 > 1 \text{ GeV/c})$ reach FAEC and GEM

For LAEC, now we take the range $30^{\circ} < \phi < 180^{\circ}$ to put a ϕ -independent plain cut, since in the region $\phi > 138^{\circ}$ the trigger cut is not well visible. Here, instead of the trigger cut one can also use a ϕ -independent cut.

at $(Q^2 > 1 \text{ GeV/c})$ reach LAEC and GEM

Rates for <u>eDIS</u> (*previous numbers from collab. meeting) for FAEC (with the cut E = 1 GeV for $42^{\circ} < \phi < 138^{\circ}$) and for LAEC (with the cut E = 0.5 GeV for $42^{\circ} < \phi < 138^{\circ}$)

FAEC	Rates are in kHz	LAEC	Rates are in kHz
with trigger cut	7.83*	with trigger cut	2.41*
no trigger cut	19.44*	no trigger cut	6.43*
with trigger cut	7.19	with trigger cut	1.91
no trigger cut	19.44	no trigger cut	6.43

Rates for <u>eDIS</u> (the most recent results) for FAEC (with the cut E = 3.5 GeV for $30^{\circ} < \phi < 138^{\circ}$) and for LAEC (with the cut E = 1.5 GeV for $30^{\circ} < \phi < 180^{\circ}$)

Rates for π^- (*previous numbers from collab. meeting) for FAEC (with the cut E = 1 GeV for 42° < ϕ < 138°) and for LAEC (with the cut E = 0.5 GeV for 42° < ϕ < 138°)

FAEC	Rates are in kHz	LAEC	Rates are in kHz
with trigger cut	447.1*	with trigger cut	1.42e+03*
no trigger cut	1.81e+03*	no trigger cut	3.72e+03*
with trigger cut	223.7	with trigger cut	657.6
no trigger cut	1.81e+03	no trigger cut	3.72e+03

Rates for π^- (the most recent results) for FAEC (with the cut E = 3.5 GeV for 30° < ϕ < 138°) and for LAEC (with the cut E = 1.5 GeV for 30° < ϕ < 180°)

Rates for $\underline{\pi^+}$ (*previous numbers from collab. meeting) for FAEC (with the cut E = 1 GeV for 42° < ϕ < 138°) and for LAEC (with the cut E = 0.5 GeV for 42° < ϕ < 138°)

FAEC	Rates are in kHz	LAEC	Rates are in kHz
with trigger cut	679.1*	with trigger cut	1.31e+03*
no trigger cut	2.24e+03*	no trigger cut	4.44e+03*
<u>with trigger cut</u>	337.6	with trigger cut	706.5
no trigger cut	2.24e+03	no trigger cut	4.44e+03

Rates for π^+ (the most recent results) for FAEC (with the cut E = 3.5 GeV for $30^\circ < \phi < 138^\circ$) and for LAEC (with the cut E = 1.5 GeV for $30^\circ < \phi < 180^\circ$)

Rates for the photons from π^0 (*previous numbers from collab. meeting) for FAEC (with the cut E = 1 GeV for $42^{\circ} < \phi < 138^{\circ}$) and for LAEC (with the cut E = 0.5 GeV for $42^{\circ} < \phi < 138^{\circ}$)

FAEC	Rates are in kHz	LAEC	Rates are in kHz
with trigger cut	7.17e+03*	with trigger cut	721.9*
no trigger cut	39.31e+03*	no trigger cut	51.43e+03*
<u>with trigger cut</u>	342.4	with trigger cut	1.41e+03
no trigger cut	37.85e+03	no trigger cut	62.30e+03

Rates for the photons from π^0 (the most recent results) for FAEC (with the cut E = 3.5 GeV for $30^{\circ} < \phi < 138^{\circ}$) and for LAEC (with the cut E = 1.5 GeV for $30^{\circ} < \phi < 180^{\circ}$)

Rates for the electrons from π^0 (*previous numbers from collab. meeting) for FAEC (with the cut E = 1 GeV for $42^{\circ} < \phi < 138^{\circ}$) and for LAEC (with the cut E = 0.5 GeV for $42^{\circ} < \phi < 138^{\circ}$)

FAEC	Rates are in kHz	LAEC	Rates are in kHz
with trigger cut	2.05e+03*	with trigger cut	33.8*
no trigger cut	40.14e+03*	no trigger cut	60.03e+03*
<u>with trigger cut</u>	33.81	with trigger cut	45.68
no trigger cut	10.20e+03	no trigger cut	3.75e+03

Rates for the electrons from π^0 (the most recent results) for FAEC (with the cut E = 3.5 GeV for $30^{\circ} < \phi < 138^{\circ}$) and for LAEC (with the cut E = 1.5 GeV for $30^{\circ} < \phi < 180^{\circ}$)

- > For the electron trigger rate, now we are working to apply the EC trigger response correctly for electron and pion instead of the simple cut, and we should also add LGC into the trigger.
- \geq We will see whether the trigger satisfies the requirement of < 100 kHz trigger rate
- > Depending on the outcome we maybe need to make a coincidence trigger of the electron and hadron
- \succ Finally, the NH₃ acceptance will be re-made, based upon which one may re-address some of the SoLID physics plots to be included in the Science Review