SoLID PVDIS Program

Paul Souder

Syracuse University

Jefferson Lab

1

Outline

- Overview of BSM tests with PVES
- Motivation for PVDIS
- The PVDIS apparatus
- Projected results and errors

$$A_{PV} = Q_W^e \frac{Q^2 G_F}{\sqrt{2}\pi} \left(\frac{1-y}{1+y^4 + (1-y)^4} \right)$$

Moller (Simple formula)

$$A_{PV} = \frac{G_F Q^2}{\pi \sqrt{2}} \left(Q_W^p + A_M + A_s + A_A \right)$$

P2: eP (Simple formula at low E and θ)

$$A^{PV} = \left(\frac{G_F Q^2}{4\sqrt{2}\pi}\right) \left(Y_1 a_1 + Y_3 a_3\right)$$

SoLID PVDIS (Simple for d at large E and θ , only way to get C₂'s)

$$a_1^d = \frac{6}{5}(2C_{1u} - C_{1d}); \quad a_3^d = \frac{6}{5}(2C_{2u} - C_{2d}).$$

 $Q_W(Z,N) = -2[C_{1u}(2Z+N) + C_{1d}(Z+2N)]$

 $Q_W(e) = -2C_{2e}$

Measure all the C's as precisely as possible

PVDIS for eD Scattering

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right] \qquad \begin{array}{l} x \equiv x_{Bjorken} \\ y \equiv 1 - E'/E \end{array}$$
$$Q^2 \gg I \ GeV^2 \ , W^2 \gg \\ 4 \ GeV^2 \ A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right] \end{array}$$

$$A_{\rm iso} = \frac{\sigma^l - \sigma^r}{\sigma^l + \sigma^r} \\ = -\left(\frac{3G_F Q^2}{\pi \alpha 2\sqrt{2}}\right) \frac{2C_{1u} - C_{1d} \left(1 + R_s\right) + Y \left(2C_{2u} - C_{2d}\right) R_v}{5 + R_s}$$

$$R_s(x) = \frac{2S(x)}{U(x) + D(x)} \xrightarrow{\text{Large } x} 0$$
$$R_v(x) = \frac{u_v(x) + d_v(x)}{U(x) + D(x)} \xrightarrow{\text{Large } x} 1$$

At high x, A_{iso} becomes independent of pdfs, x & W, with well-defined SM prediction for Q² and y

Standard Model Effective Field Theory (SMEFT)

$$\mathcal{L} = \sum_{d} \sum_{ij} \frac{C_d^{ij}}{\Lambda^{4-d}} \mathcal{O}_d^{ij}$$
 SMEFT identifies
all possible BSM physics
$$\mathcal{O}_d^{ij} = \overline{e}_i \gamma_\mu e_i \overline{f}_j \gamma^\mu f_j$$
 61 d=6; 993 d=8 independent coupling
$$e_{L/R} = \frac{1}{2} (1 \mp \gamma^5) \psi_e$$
 Goal: Measure each C_d^{ij}
as precisely as possible
(Nobody really knows where
the new physics is.)

SMEFT also identifies regions of exclusion from world data sets

$$\mathcal{A} = (\mathcal{A}_{SM} + \frac{\mathcal{A}_6}{\Lambda^2} + \frac{\mathcal{A}_8}{\Lambda^4} \dots)$$
Example: LHC Drell-Yan
For PVES: $A_{PV} \sim \mathcal{A}_{EM} \times \mathcal{A}$
mainly sensitive to d=8
operator
For Drell - Yan : $\sigma_{BSM} \sim (\mathcal{A}_6)^2 + \mathcal{A}_{SM} \times \mathcal{A}_8$

•Alioli et al., e-Print: <u>2003.11615</u> [hep-ph]

couplings

6

Improvement in

With this precision, SoLID makes a unique contribution to the SMEFT program.

Improvement in energy reach for electron-nucleon couplings

Possible Lepto-Phobic Z'; Example at lower energy

Motivation for introducing new particle:

Baryon number is a global symmetry in the SM (bad). Theories of local baryon number symmetry are attractive. They predict a lepto-phobic boson. They also predict a dark matter candidate.

Prerez, Phys. Rept. 597, (2015) 1-30

Leptophobic Z'

Modifies mainly C₂'s in PVES

Prerez, et al., JHEP 07 (2020) 087

Dark Boson Z_d and $sin^2 \theta_W$

Only effect is to change $\sin^2 \theta_W$ at low Q²

PVES is the only way to see Z_d if decay is dominated by invisible particles

	Precision	$\delta { m sin}^2 heta_{ m W}$	$\Lambda_{\sf new}$
APV CS	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak	6.3 %	0.0011	26.3 TeV
PVDIS	4.5 %	0.005	7.6 TeV
SoLID	0.6 %	0.0006	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV
ATLAS-2017			40 TeV

Note poor correlation between $\sin^2\theta_W$ and Λ . This Is one example of why many experiments are needed.

Hadronic Physics: Charge Symmetry Violation

For A_{PV} in electron-²H DIS

Additional contribution to NuTeV anomaly?

"The paper on PVDIS and the EMC effect highlights a way -- perhaps the best way -- to access the flavor dependent of the EIC effect using PVDIS." Ian Cloet

The observation of Higher Twist in PV-DIS would be exciting direct evidence for diquarks

following the approach of Bjorken, PRD 18, 3239 (78), Wolfenstein, NPB146, 477 (78)

Isospin decomposition before using PDF's

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$$

Higher-Twist valence quark-quark correlation

Zero in quark-parton model

$$\langle VV \rangle - \langle SS \rangle = \langle (V-S)(V+S) \rangle \propto l_{\mu\nu} \int \langle D | \overline{u}(x)\gamma^{\mu}u(x)\overline{d}(0)\gamma^{\nu}d(0) \rangle e^{iq \times t} d^4x$$

(c) type diagram is the only operator that can contribute to a(x) higher twist: theoretically very interesting!

 σ_L contributions cancel

Structure Function Ratio d/u for the Proton

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$$

$$a^{P}(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

PVDIS is complementary to the rest of the JLAb d/u program: no nuclear effects

SoLID Apparatus

Requirements

- High Luminosity with E > 10 GeV
- Large scattering angles (for high x & y)
- Better than 1% errors for small bins
- x-range 0.25-0.75
- $W^2 > 4 \text{ GeV}^2$
- Q² range a factor of 2 for each x
 (Except at very high x)
- Moderate running times

Sto

Jefferson Lab

13

Baffle

5xGEMs

LGC

EMs EC

PVDIS Baffles and Acceptance

GEM Tracking and Resolution

Momentum Resolution

2.5 σ(∆p/p) (%) $\theta = 21^{\circ}$ $\theta = 23^{\circ}$ $\theta = 25^{\circ}$ $\theta = 27^{\circ}$ 2 $\theta = 29^{\circ}$ $\theta = 31^{\circ}$ $\theta = 33^{\circ}$ $\theta = 35^{\circ}$ 1.5 0.5 0 2 5 6 3 p (GeV/c) Polar Angle Resolution 2.5 $\sigma(\Delta \theta)$ (mrad) $\theta = 21^{\circ}$ $\theta = 23^{\circ}$ $\theta = 25^{\circ}$ = 27° $\theta = 29^{\circ}$ $\theta = 31^{\circ}$ $\theta = 33^{\circ}$ $\theta = 35^{\circ}$ 1.5 0.5 0 2 3 5 6 4 p (GeV/c)

Light Gas Cerenkov for PVDIS

Together with ECal is the basis for the DAQ trigger.

Testing the performance of the Cerenkov counters, at both low and high rates, is part of the Pre-R&D plan

Performance of Ecal for PVDIS Trigger

Keep trigger rate to 15 kHz/sector without tracking information

Energy Resolution

Jefferson Lab

17

Pion-Electron Separation After Reconstruction

Pion contamination after tracks are reconstructed with the GEM's

PVDIS Electronics

The full capabilities of the electronics is being tested as part of the PreR&D plan.

Q² Calibration with Elastic eP Scattering (0.2%)

Precision Polarimetry: 0.4% Precision

ComptonApparatus

Compton Error Budger

Relative error (%)	electron	photon
Position asymmetries*	-	-
E_{Beam} and λ_{Laser}^*	0.03	0.03
Radiative Corrections*	0.05	0.05
Laser polarization*	0.20	0.20
Background / Deadtime / Pileup	0.20	0.20
Analyzing power Calibration / Detector Linearity	0.25	0.35
Total:	0.38	0.45

Moller Error Budget

Hall C	Hall A
0.25%	0.30%
‡	‡
0.24%	0.20%
0.30%	0.20%
0.05%	0.05%
‡	0.10%
‡	0.10%
0.10%	0.10%
0.47%	0.45%
	Han C 0.25% ‡ 0.24% 0.30% 0.05% ‡ 0.10% 0.47%

‡: not estimated

Moller Apparatus

Projected Statistics

PVDIS Asymmetry Uncertainty (%)

Kinematic dependence of physics topics:

	X	Y	\mathbf{Q}^2
New Physics	none	yes	small
CSV	yes	small	small
Higher Twist	large?	no	large

$$A_{\text{Meas.}} = A_{\text{SM}} \left[1 + \frac{\beta_{\text{HT}}}{(1-x)^3 Q^2} + \beta_{\text{CSV}} x^2 \right]$$

Error Budget

Total	0.6
Polarimetry	0.4
Q2	0.2
Radiative Corrections	0.2
Event reconstruction	0.2
Statistics	0.3

Energy(GeV)	4.4	6.6	11	Test
Days(LD2)	18	60	120	27
Days(LH2)	9	-	90	14

180 Days are Approved

Summary

- SoLID PVDIS preforms an important BSM search.
- PDVIS also probes interesting hadronic physics.
- The SoLID spectrometer is capable of performing the measurement with the required precision.

