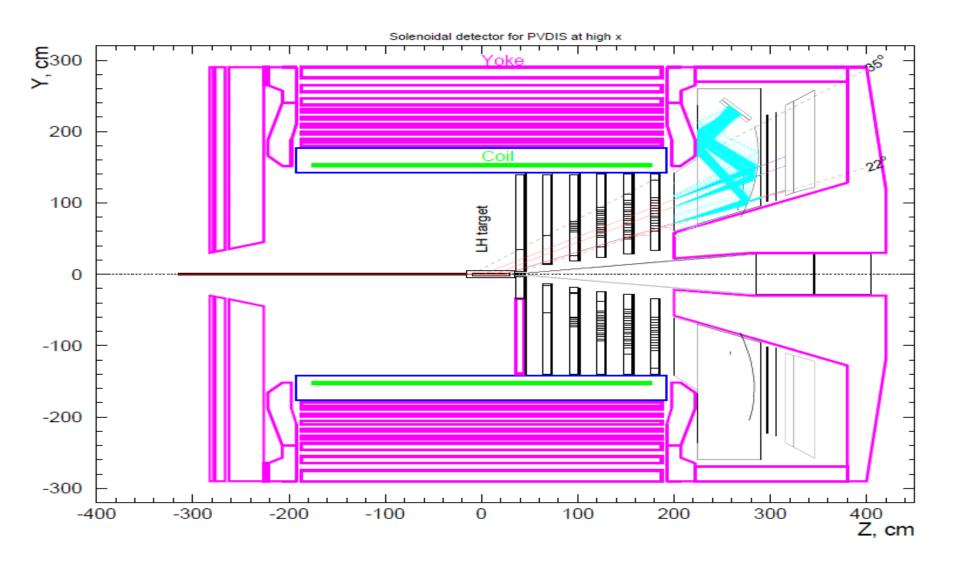


SoLID DAQ preRD

SoLID collaboration meeting October 9th 2020

Alexandre Camsonne


94tline uirements

- DAQ risks
- Data rates
- Timeline preRD
- PreRD items
- VMM
- APV25
- FADC test stand
- MAROC
- Tasks and milestone

Detector layout and trigger for PVDIS

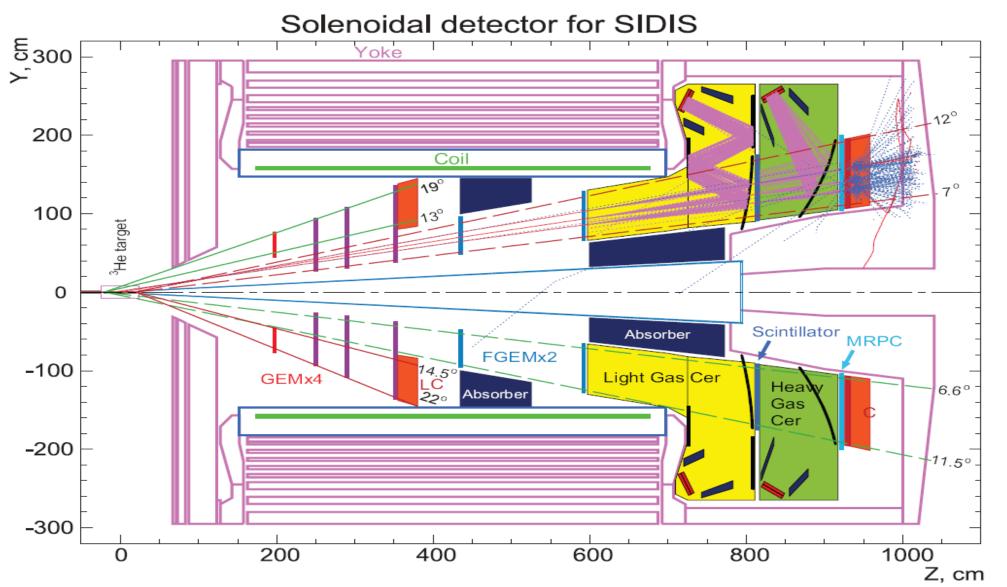
Trigger

Calorimeter

+

Cerenkov

200 to 500 KHz of electrons


30 individual sectors

Max 17 KHz/sector

Detector layout and trigger for SIDIS

Trigger

Calorimeter

+

Cerenkov

+

SPD

30 sectors
Combined
in
10 regions of interests

Baseline 60 KHz coincidence e- pion

Max rate 200 KHz

SoLID requirements

Experiments	PVDIS	SIDIS- ³ He	SIDIS-Proton	J/ψ	
Reaction channel	$p(\vec{e}, e')X$	$(e, e'\pi^{\pm})$	$(e, e'\pi^{\pm})$	$e + p \rightarrow e' + J/\Psi(e^-, e^+) + p$	
Approved number of days	169	125	120	60	
Target	LH ₂ /LD ₂	³ He	NH_3	LH_2	
Unpolarized luminosity	$0.5 \times 10^{39} / 1.3 \times 10^{39}$	$\sim 10^{37}$	$\sim 10^{36}$	$\sim 10^{37}$	
$(cm^{-2}s^{-1})$					
Momentum coverage (GeV/c)	2.3-5.0	0.8-7.0	0.8-7.0	0.6-7.0	
Momentum resolution	${\sim}2\%$	$\sim \! 2\%$	~2%	${\sim}2\%$	
Polar angle coverage (degrees)	22-35	8-24	8-24	8-24	
Polar angle resolution	1 mr	0.6 mr	0.6 mr	0.6 mr	
Azimuthal angle resolution	-	5 mr	5 mr	5 mr	
Trigger type	Single e^-	Coincidence $e^- + \pi^{\pm}$	Coincidence $e^- + \pi^{\pm}$	Triple coincidence $e^-e^-e^+$	
Expected DAQ rates	$<20 \mathrm{kHz} \times 30$	<100 kHz	<100 kHz	<30 kHz	
Backgrounds	Negative pions, photons	$(e,\pi^-\pi^{\pm})$	$(e,\pi^-\pi^\pm)$	BH process	
		(e,e'K [±])	(e,e'K [±])	Random coincidence	
Major requirements	Radiation hardness	Radiation hardness	Shielding of sheet-of-flame	Radiation hardness	
	0.4% Polarimetry	Detector resolution	Target spin flip	Detector resolution	
	π^- contamination	Kaon contamination	Kaon contamination		
	Q ² calibration	DAQ			

Risks associated with DAQ

	Risk	Level	WBS	Mitigation
GEM readout	100 KHz capability Achieved resolution	High	1.2.4.2,1.1.5.3	Simulation, test
Data rates	Bandwidth sufficient, electronics can handle	Medium	1.1.5.1.4	Test (preRD and R&D)
Trigger rate	Can required trigger rate reached for SIDIS	Medium	1.1.5.1.7,1.1.5.1.8	Test (preRD and R&D)
Deadtime PVDIS	Can deadtime be an issue for PVDIS?	High	1.2.4.2,1.1.5.3 1.1.5.1.7,1.1.5.1.8	Drives chip choice and electronics design
Data reduction	Can data be reduced to a reasonable size for silo?	Medium		Simulation,test,beam test
Cost	Can performance required be reached within budget	Medium		Test
Particle ID	Background rejection sufficient	High		Simulation, beam test

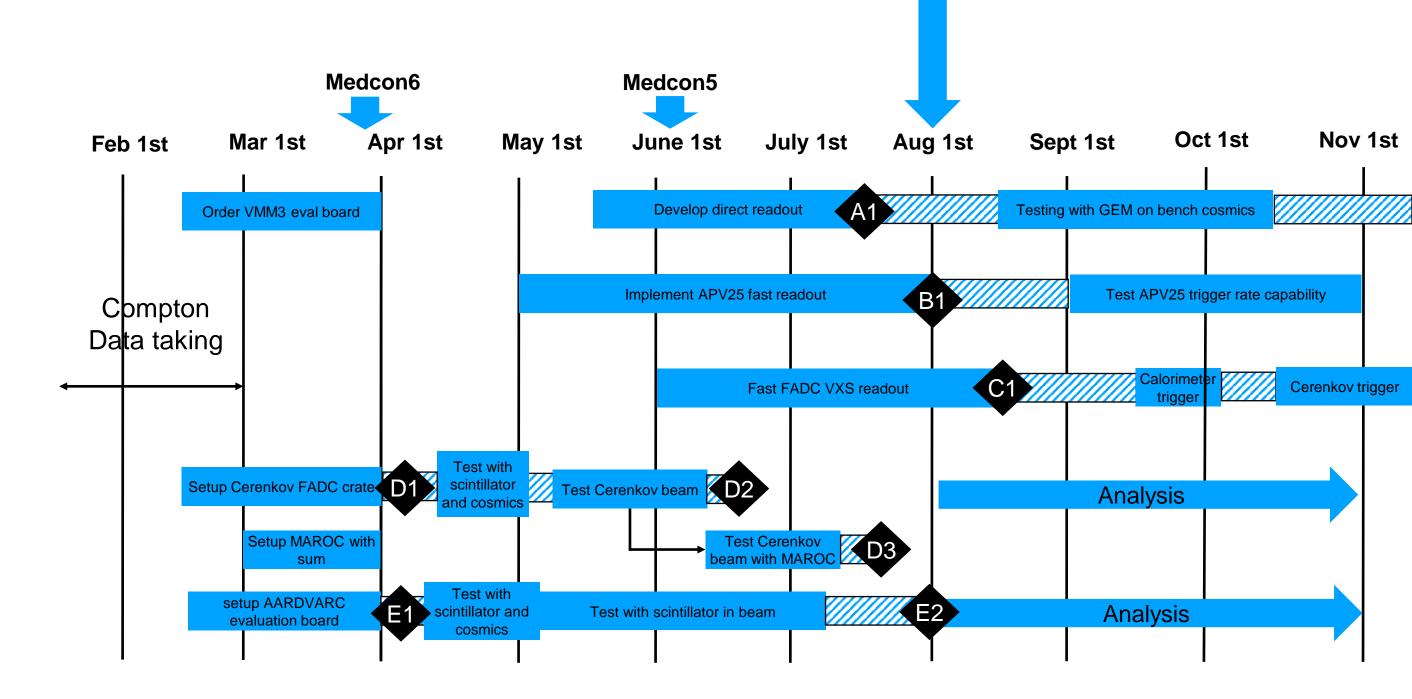
Event size data rates PVDIS APV25

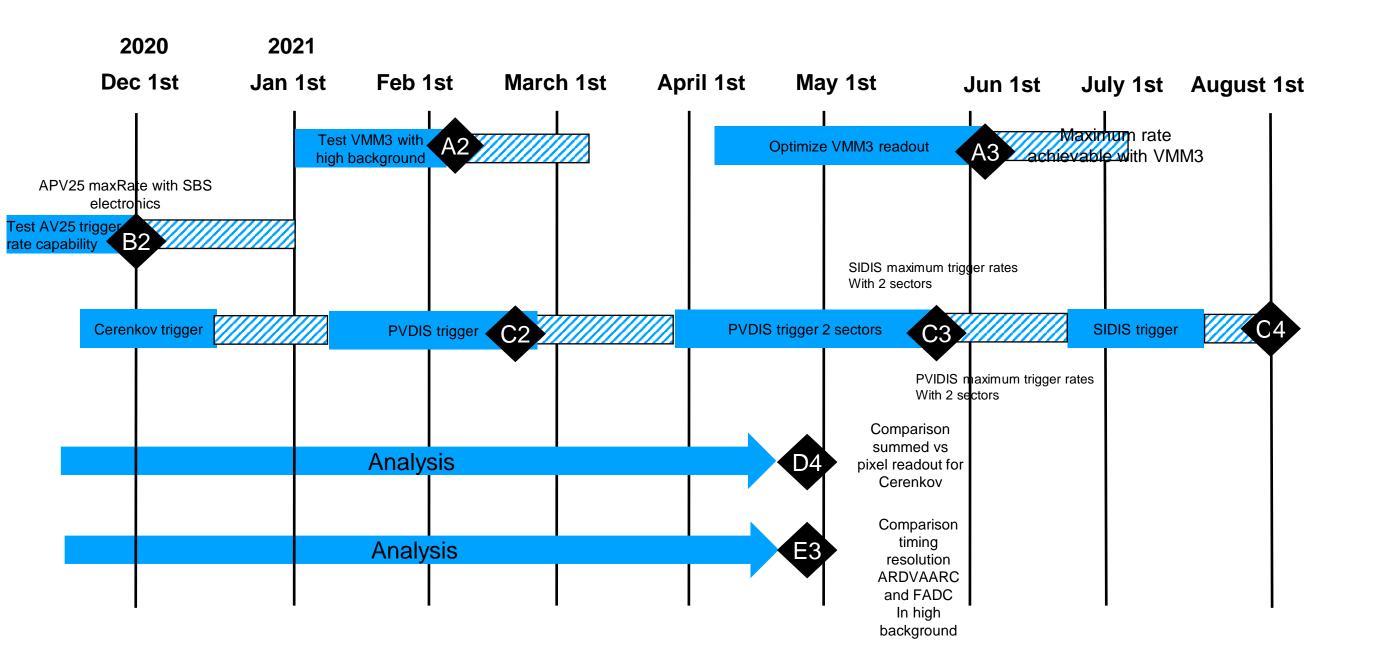
				Event size		Data rate MBs	After noise cut	strips firing	event size bytes		MB/s
1	1156	21.17	244.73	3038.03	3038.03	60.76	9.97	115.25	1430.76	1430.76	28.62
2	1374	10.35	142.21	1765.39	1765.39	35.31	5.11	70.21	871.61	871.61	17.43
3	1374	8.81	121.05	1502.71	1502.71	30.05	4.42	60.73	753.92	753.92	15.08
4	2287	3.07	70.21	871.60	871.60	17.43	1.64	37.51	465.61	465.61	9.31
5	2350	2.79	65.57	813.93	813.93	16.28	1.50	35.25	437.60	437.60	8.75
					Total	159.83				Total	79.19
FADC											
	20000						10				
	Event size FADC	Nb channel	Header			Trailer	Sample				
	Calorimet er	14	4			4	12	280			
	Preshowe r	9	4			4	12	180	400		
	Cerenkov	9	4			4	12	180			
									11600000		
								740	11600000	11.6	
									Total rate	94	MB/s

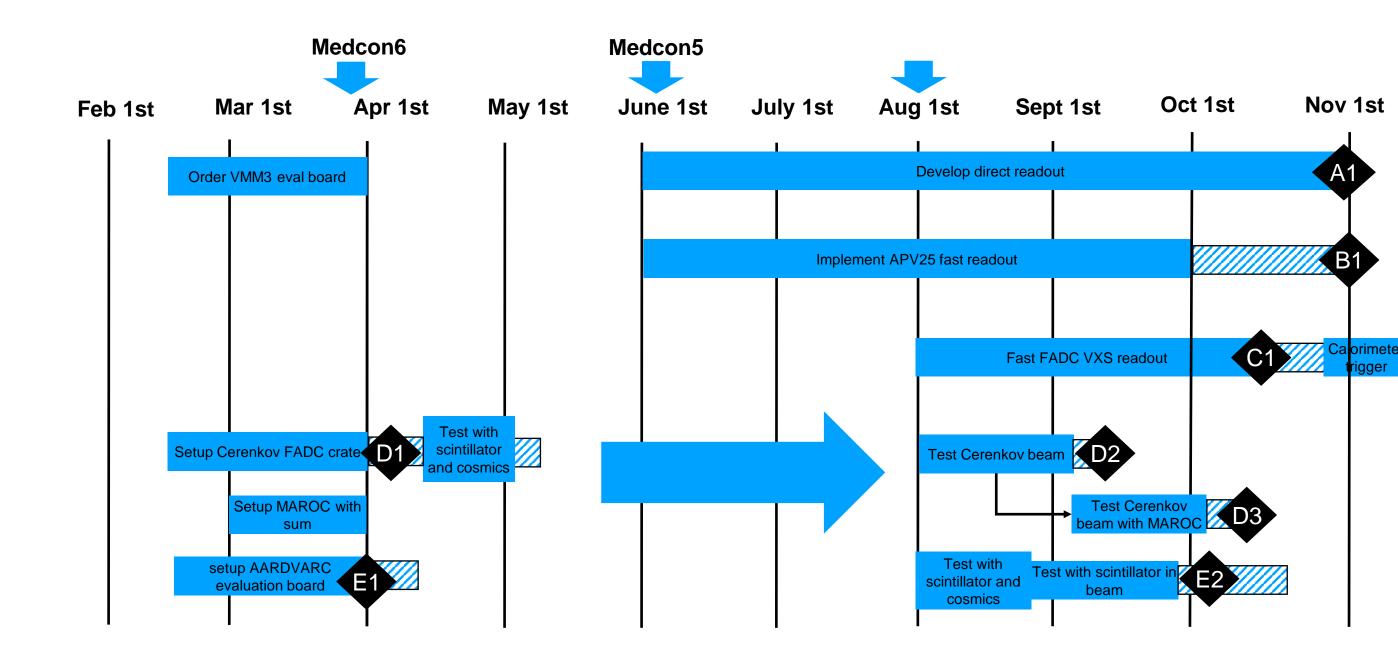
About 2.9 GB/s for PVDIS at 20 KHz
Occupancy with VMM3 being studied
Expect factor 3 reduction due to faster integration time and no need

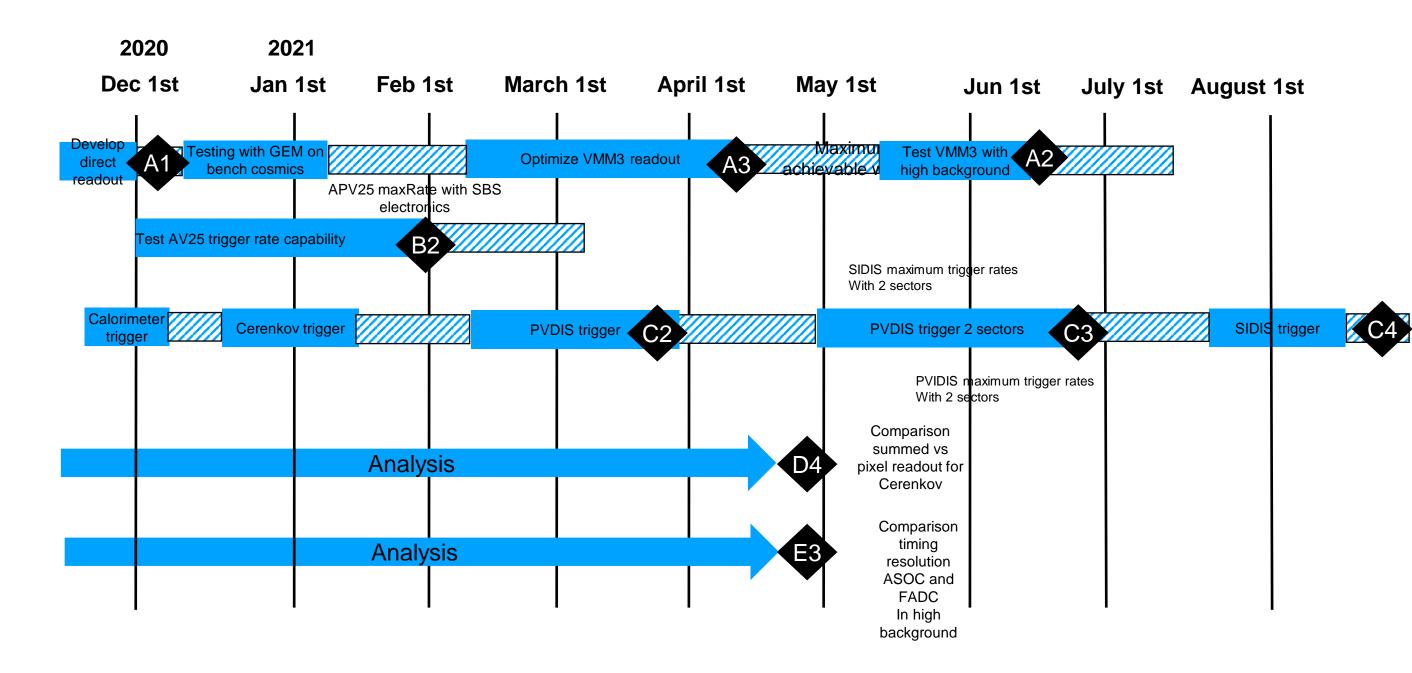
for 3 samples

SIDIS event size APV25


Occupancies with one sample readout by Weizhi, rates for 100 KHz


GEM	Occupancy	Number of strips	XY strips	Strips per chambers	MB/s
1	2.21	453	906	27180	245
2	8.78	510	1020	30600	1184
3	3.63	583	1166	34980	559.5
4	2.31	702	1404	42120	428.7
5	1.78	520	1040	31200	244.71
6	1.3	640	1280	38400	220
Total	20.01	3408	6816	204480	2901


GEM dominating 2.9 GB/s same requirement as PVDIS Expect factor 2 reduction using VMM3



Tasks and milestones

- A: VMM high rate test
 - A1: procure evaluation board and test direct readout April 1st 2020 delayed November 2020
 - A3: develop prototype determine maximum trigger rate December 1st 2020 ongoing
 - A2: study behavior in high background February 15th 2021 delayed June 15th 2021 on going
- B : APV rate capability
 - B1 : develop Fast Readout August 1st 2020 delayed December 2020 (after FADC VXS readout)
 - B2: demonstrate 100 KHz rate November 1st 2020 delayed February 1st 2021
- C: FADC development (shift by 2 months)
 - C1: Fast VXS readout August 15th 2020 delayed October 15th 2020 ongoing
 - C2: Calorimeter trigger September 15th 2020 delayed December 1st 2020
 - C3: PVDIS trigger and test February 15th 2021 delayed April 15th 2021
 - C4: PVDIS trigger and test 2 sectors May 15th 2021 –delayed June 15th 2021
 - C5: SIDIS trigger and test July 15th 2021 -

Tasks and milestones

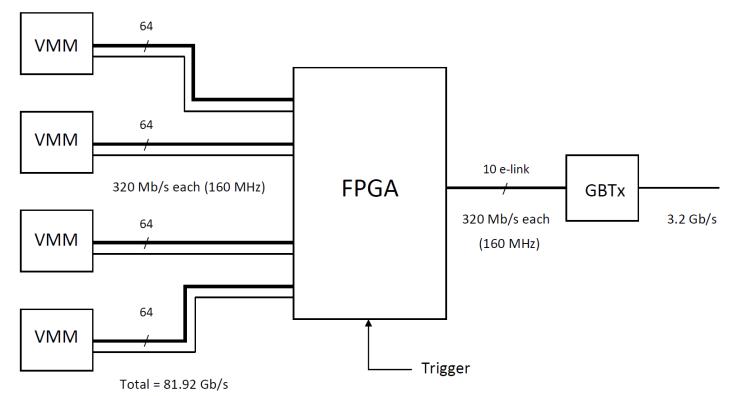
- D: Gas Cerenkov Test support (shifted by 2 months due to COVID, beam resumed August 1st)
 - D1: readout for Cerenkov test April 1st 2020
 - D2: Cerenkov data with high background June 15th 2020 delayed August 1st 2020 – on going
 - D3: MAROC data with high background July 15th 2020 delayed October 15th (
 - D4: evaluation improvement with MAROC pixel readout April 15th 2021
- E: NALU ASOC Time of flight chip
 - E1: install evaluation board April 1st 2020
 - E2: sample high background data delayed August 1st 2020 October 15th 2020
 - E3: timing resolution April 15th 2021

VMM test

- Ordered two test board 1500 \$ x 2
- Evaluation board : can look at data with detector small subset of channels
 - Issue with external trigger but waiting for new firmware
 - Can check pedestal width
 - Signal to noise with detector with source and cosmics
 - Look at direct readout signals for 12 channels of detector
- Prototype development for data performance, test direct output with detector and X-ray source

VMM3 prototype board development (Ed)

FPGA for VMM Direct Readout


(E.J. 5/28/20)

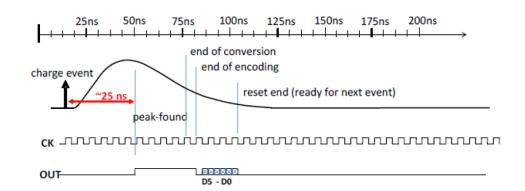
Proposal

1 FPGA handles direct readout of 4 VMM chips

[64(channels/chip) + 1(clock/chip)] x 2(pins/signal) x 4(chips) = 520 pins (reasonable size, price FPGA)

1 GBTx data link for FPGA output data (10 e-links @ 320 Mb/s = 3.2 Gb/s)

VMM3 prototype board development (Ed)


Trigger rate (max) = (3200 Mb/s) / (4656 + w*r*3072 b)

```
e.g. r = 10 MHz, w = 0.400 \mu s => Trigger rate (max) = 189 KHz r = 15 MHz, w = 0.400 \mu s => Trigger rate (max) = 139 KHz
```

Or we can solve for the quantity w*r:

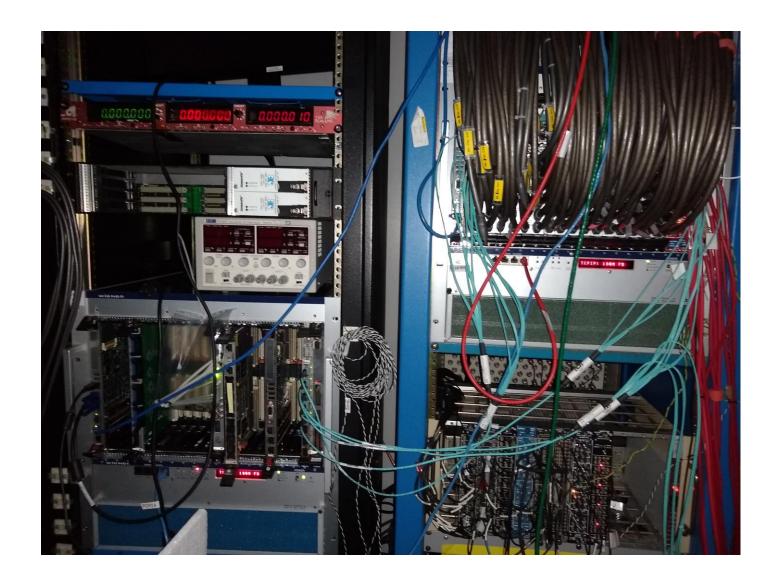
R = trigger rate (MHz)

$$w(\mu s)*r(MHz) = 1.04166 / R(MHz) - 1.51563$$

VMM 6-bit ADC Direct Output timing

VMM3 prototype board development (Ed)

- Direct readout with 15 MHz and 400 ns window gives 139 KHz trigger rate capability sufficient for PVDIS and SIDIS, most likely can reach 200 KHz if more segmentation and shorter window applicable
- Simulation of direct outputs by Jinlong ongoing
- Possible issues :
 - Low resolution ADC direct readout not good enough for high rate strips (PVDIS), instrument small angle with APV25 from SBS
 - Signal to noise worse when using 25 ns shaping time
 - Pile-up



APV25 tests

- Fiber and transceivers ordered for full scale test
- SSP new firmware up to 32 MPDs developed and being tested with 12 MPDs
- Will add more MPDs when access to lab
- High speed readout of MPDs with VTP will eliminate VME backplane bottleneck (200 MB / s vs 1.25 GB/s) in development
- Will test after MPD software updated and with more boards

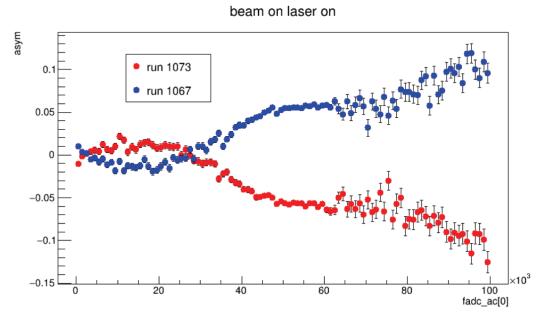
APV25 tests

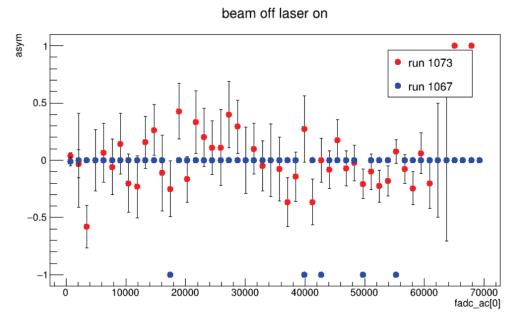
- Test setup using INFN clean room
- 1 VXS crate, 1 SSP, 18 MPDs, fully equipped chambers
- VTP readout development
- Optical to VXS adapter almost designed
- Delay in preRD due to noisy optical supply line, optical link speed had to be reduced from 2.5 Gbps to 1.25 Gbps
- Reduce data capability by a factor of 2
- Currently 10 kHz 5APV 6 samples 100% occupancy > 100 kHz with 8 APV ,1 sample at 30 % occupancy

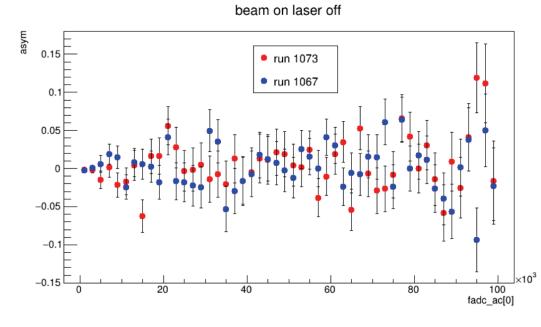
FADC test stand

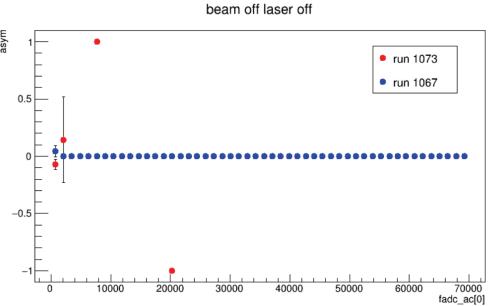
- Duplicate setup at Umass / agreed to do FADC tests for SoLID
- Working with Ben for calorimeter firmware developement

Preliminary results from Compton

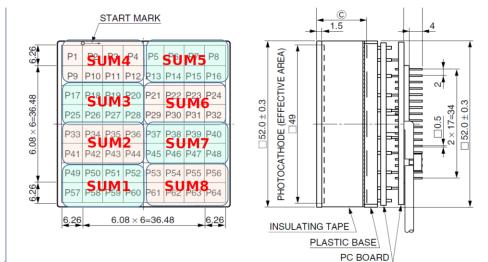

- FADC + VETROC + VTP (trigger module)
- Implemented delayed helicity readout
- Helicity scaler with VETROC and VTP for normalization (deadtime, power, position)
- Photon (and electron trigger)

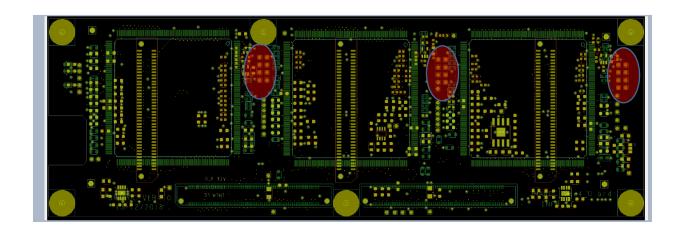


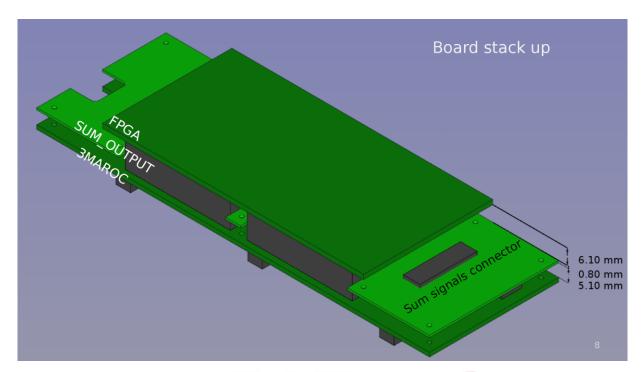

Preliminary results from Compton


 Rates up to 50 KHz with deadti me of about 10%

Compt on Asymm etry from Photon

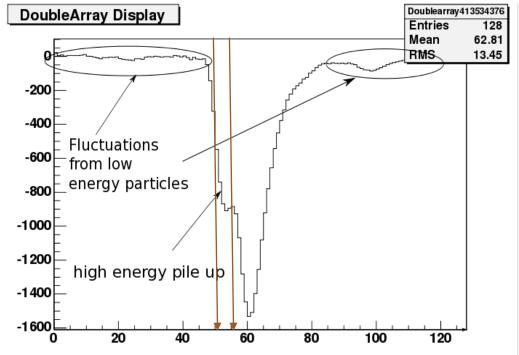






MAROC

- INFN Ferrara accepted to modify RICH board to have sum output
- Zhiwen and Bishnu are testing on bench


AARDVARC / ASOC

- Received Eval board ASOC
- Software installed and running but need test with pulser / detectors
- Test with PMTs on bench cosmics
- Test with Radioactive source

TOF ASOC chip

- Scintillator for TOF: want to evaluate effect of pile-up on timing resolution and compare FADC vs ASOC
- Testing ASOC instead of AARDVARC : more suitable for scintillator readout with PMTs
- Borrowed ASOC board from NALU
- Acquired Nexsys FPGA eval board
- Software installed and board running
- Tested with pulser but awaiting for spare
- Will test with radiactive source

SoLID preRD review

- In view of the uncertainties with the ongoing pandemic, including the possibility ofrenewed "shut-down", prioritize test-areas so that they can be operated remotely andthat the data can be accessed remotely.
- Jefferson Lab is in the process of re-establishing beam for experiments in Hall-A and Hall-C. The window to take data is upperbound by scheduling of activities for future projects and is likely to close by mid-September for a (very) extended period. The pre-R&D collaboration should prioritize taking data early on this window.
- The pre-R&D collaboration should clearly delineate DAQ tests that can be done onthe bench and those that (absolutely) need beam.
- Given that the VMM3 seems to be the preferred choice of readout chip, with the APV25 being a backup and hybrids being undesirable, it is important to understand as early as possible within the pre-R&D effort the maximum rate capability of the VMM3 chip. The committee recommends, if possible, advancing the determination of the maximum rate capability of the VMM3 chip.

SoLID preRD review

- Most setup able to be accessed remotely with punctual access to lab
- Setup for bench test with pulser and radioactive source
- Setup of evaluation board will give preliminary results before science review for VMM3
- Hall network upgrade: will allow to test current data rate capability with APV readout during SBS

Conclusion

- Data rates
- PreRD timeline updated taking into account COVID delays
- PreRD ongoing with bench and source tests
 - VMM3: prototype designed for 140 kHz trigger rate, will get preliminary results before science review and definitive results in summer
 - APV25 : should be able to handle SIDIS 100 KHz at 30 % occupancy
 - FADC: developments ongoing, 50 KHz 10% deadtime with slow readout, fast readout 10 faster
 - MAROC
 - ASOC
- PreRD review positive : comments taken into account
- Can test during SBS
- Should meet SoLID requirements with new developments

