SoLID SIDIS-NH₃ Studies (update)

Vladimir Khachatryan Physics Department, Duke University

SoLID Collaboration Meeting, 9 October 2020

 \succ The SoLID SIDIS program includes He³ and NH₃ target-based experiments

- The overall background rates in the transversely polarized NH₃ target experiment are expected to be smaller compared to those of the He³ target experiment
- But due to the large magnetic field in the transverse direction, the high rate particles form a sheet-of-flame type background in the NH₃ experiment

- \geq Our purpose was to study the single electron trigger rate in the NH₃ experiment • to find out whether we can obtain 100 kHz (or less) total single particle trigger threshold • by studying the particle rate in detectors with all material budget

 - by controlling the sheet-of-flame type background properly

> In general we carried out trigger, background and acceptance studies

- using eDIS and Wiser generators
- and full Geant4 simulations

> During the Collaboration Meeting in June, I showed some preliminary results on the trigger rates

- Today I will show updated new results
- We will see rate numbers from the combined response of three FA and two LA sub-detectors

Reminder on the SIDIS-NH₃ setup

 $e + p -> e' + \pi^{+/-} + X$

- The NH₃ target polarization is required to be higher than 70% with the spin flip in every few hours.
- Two Beam energies: 11 GeV and 8.8 GeV
- Total luminosity $5.95 \cdot 10^{35} \, cm^{-2} \, s^{-1}$
- Beam current: 100nA
- The beam goes through 5T target magnetic field
- Density of the NH₃ target is 0.819 g cm⁻³
- NH₃ target thickness is 2.826 cm
- The target is immersed in liquid He⁴ 3

Reminder on the sheet-of-flame (sof) cuts

Here are the sheet-of-flame cuts for FAEC/FASPD as well as for LAEC/LASPD

- The lower part has no detector
- The fake hits are from average hit positions of low energetic particles spirally passing one plane multiple times

Electron momentum – azimuthal angle dependence for FAEC after sof cuts

- We have determined
 - the FAEC trigger condition: $Q^2 > 1$ (GeV/c)²
 - the LAEC trigger condition: E > 3 GeV
- Let's now look at the momentum P (in GeV/c) of electrons (reaching FAEC and GEM) vs. the azimuthal ϕ angle
- The plot below shows what the particle hit pattern looks like because of the asymmetric field

All electrons at $Q^2 > 1$ (GeV/c)² reach FAEC and GEM

(for LAEC the physics cut E = 3.5 GeV has been used for the SIDIS-proton proposal E12-11-108)

Electron energy – radius dependence for FAEC after sof cuts

- Four plots for the Energy (in GeV) of electrons vs. the radius R (in cm) on the surface of FAEC
- The $Q^2 = 1$ (GeV/c)² lines are implemented as step functions in $\phi = 6^{\circ}$ bins from -180° to 180°
- Totally there are sixty ϕ bins for FAEC

New results on the particle hit rate for FA sub-detectors

Here we show single rates for different particles with 11 GeV beam

- from the forward angle EC
- from the combined response of the forward angle EC + LGC
- from the combined response of the forward angle EC + LGC + SPD

<u>e_FA (kHz)</u>	EC	EC+LGC	EC+LGC+SPD
Electron (primary + secondary)	9.53	8.56	7.88
Electron (primary)	8.15	7.72	7.20
π ⁻ (primary + secondary)	290.91	4.75	4.46
π ⁻ (primary)	239.16	4.40	4.14
π^+ (primary + secondary)	460.31	4.92	4.33
π^+ (primary)	393.46	4.49	3.98
π^0 , γ / π^0 , e (primary + secondary)	490.44 / 37.77	10.52 / 7.80	6.56 / 7.18
Proton (primary + secondary)	166.57	0.0015	0.00052
Proton (primary)	150.78	0.000135	0.000135
Sum of each column	1 4560102		20.41
(primary + secondary)	1.4568+03	30.55	30.41
Sum of each column (primary)	791.55	16.61	15.32

The electron trigger cuts, Q² > 1 (GeV/c)², are applied; the EC, LGC and SPD sof cuts are applied

New results on the particle hit rate for LA sub-detectors

Here we show single rates for different particles with 11 GeV beam

• from the forward angle EC and from the combined response of the forward angle EC + SPD

<u>e_LA (kHz)</u>	EC	EC+SPD
Electron / Proton (primary + secondary)	0.84	0.75
Electron / Proton (primary)	0.82	0.74
π ⁻ (primary + secondary)	14.45	12.90
π ⁻ (primary)	13.47	12.15
π^+ (primary + secondary)	17.87	16.68
π ⁺ (primary)	16.55	15.51
π^{0} , γ / π^{0} , e (primary + secondary)	22.27 / 0.28	1.41 / 0.28
Proton (primary + secondary)	17.76	16.77
Proton (primary)	17.35	16.40
Sum of each column		
(primary + secondary)	73.47	48.79
Sum of each column (primary)	48.19	44.80

The flat LAEC electron trigger cut, E = 3.0 GeV, is applied; the EC and SPD sof cuts are applied

- > For FA and LA EC, LGC, SPD we turn off some sectors/modules, due to the sof's presence
- > The largest effect comes from the EC sof cuts
- The LGC and SPD sof cuts are in the same kinematics and we don't lose much physics events

Total single rate and Acceptance

In summary, we are interested in

Total sum of (primary + secondary) FA EC+LGC+SPD and LA EC+SPD

And here are the new acceptance plots for the NH₃ target experiment

The new acceptance plots by FA and LA sub-detectors

= 79.2 kHz

- \succ For determining the total trigger rate of the SoLID SIDIS-NH₃ experiment, we used the combined trigger response
 - from the forward angle EC + LGC + SPD
 - from the large angle EC + SPD
- Detailed study of detector rate, occupancy and relation with the sheet-of-flame would need help from all sub-detector groups
- Improve the results of the studies reported in this presentation
 - using the longer endcap
 - using the generator solid_bggen for hadrons, instead of the currently used Wiser generator
 - using more realistic EC trigger function
- Revisit the physics projection for SIDIS-"p" and update where necessary, using the new acceptance information

Backups

The FAEC sof cuts

 $(-92^{\circ} < \phi < -88^{\circ}, R < 196 cm)$ and $(-78^{\circ} < \phi < -35^{\circ}, R < 190 cm)$ and $(-35^{\circ} < \phi < -9^{\circ}, R < 162 cm)$ and $(23^{\circ} < \phi < 39^{\circ}, 131 cm < R < 165 cm)$ and $(39^{\circ} < \phi < 55^{\circ}, R < 165 cm)$ and $(55^{\circ} < \phi < 70^{\circ}, R < 131 cm)$

The LAEC sof cuts

 $(-92^{\circ} < \phi < -88^{\circ}, R < 196 cm)$ and $(-81^{\circ} < \phi < -56^{\circ}, R < 31 cm)$ and $(-56^{\circ} < \phi < -47^{\circ}, 100 cm < R < 31 cm)$ and $(53^{\circ} < \phi < 63^{\circ}, 97 cm < R < 131 cm)$ and $(63^{\circ} < \phi < 71^{\circ}, R < 131 cm)$ and $(71^{\circ} < \phi < 77^{\circ}, R < 96 cm)$

The LGC sof cuts

 $(-82^{\circ} < \phi < -40^{\circ}, R < 115 cm)$ and $(55^{\circ} < \phi < 77^{\circ}, R < 103 cm)$, which corresponds to the LGC sector - 17, 18, 19, 28, 29

The FASPD sof cuts

(-67° < φ <-56°, R<181cm) and (-49° < φ <-11°, R<143cm) and (40° < φ < 62°, R<143cm), which corresponds to the FASPD sector/module - 35/1, 35/2, 35/3, 37/1, 37/2, 38/1, 38/2, 39/1, 39/2, 40/1, 40/2, 41/1, 41/2, 42/1, 42/2, 43/1, 43/2, 52/1, 52/2, 53/1, 53/2, 54/1, 54/2, 55/1, 55/2

The LASPD sof cuts

 $(-81^{\circ} < \phi < -49^{\circ}, R < 127 cm)$ and $(57^{\circ} < \phi < 73^{\circ}, R < 124 cm)$, which corresponds to the LASPD sector - 32, 33, 34, 35, 36