Measurement of e⁺/e⁻ – ²H DIS Asymmetries Using SoLID and a Positron Beam at JLab

> Xiaochao Zheng Univ. of Virginia April 17, 2021

- SM NC couplings
- all γZ interference asymmetries in lepton scattering
- measurement of $A_{unpol}^{e^+e^-}$ DIS asymmetry
- roadmap towards realization

An idea being developed

https://arxiv.org/abs/2103.12555 https://arxiv.org/abs/2007.15081

Thanks to:

- David Flay, Joe Grames, Paul Reimer, Ye Tian, Eric Voutier, Jixie Zhang, Zhiwen Zhao
- Andrei Afanasev, Jens Erler, Qishan Liu, Hubert Spiesberger

Neutral-Current Weak Interaction in Electron Scattering

In typical PVES: we measure parity violating asymmetries (A_{PV}) between left- and right-handed electron beam scattering off an unpolarized target

 $J_{\mu}^{NC}(lepton) = \left(\bar{u}_{l} \gamma_{\mu} \frac{1}{2} (c_{V}^{l} - c_{A}^{l} \gamma^{5}) u_{l}\right)$ + $-i\frac{g_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{M_{Z}^{2}}}{q^{2}-M_{Z}^{2}}$ Z $J_{\mu}^{NC}(q) = \left(\bar{u}_{q} \gamma_{\mu} \frac{1}{2} (c_{V}^{q} - c_{A}^{q} \gamma^{5}) u_{q} \right)$ at Q² << M_{7}^{2} : $L_{NC}^{lq} = \frac{G_F}{\sqrt{2}} \sum_{q} \left[C_{0q} \overline{l} \gamma^{\mu} l \overline{q} \gamma_{\mu} q + C_{1q} \overline{e} \gamma^{\mu} \gamma_5 l \overline{q} \gamma_{\mu} q + C_{2q} \overline{e} \gamma^{\mu} e \overline{q} \gamma_{\mu} \gamma_5 q + C_{3q} \overline{l} \gamma^{\mu} \gamma_5 l \overline{q} \gamma_{\mu} \gamma_5 q \right]$ AV. VA AA (parity-violating) (identical to γ) $C_{1u} = 2 g_A^e g_V^u = -\frac{1}{2} + \frac{4}{3} \sin^2(\theta_W) \qquad C_{2u} = 2 g_V^e g_A^u = -\frac{1}{2} + 2 \sin^2(\theta_W)$ $C_{3u} = -2 g_A^e g_A^u = \frac{1}{2}$ $C_{1d} = 2 g_A^e g_V^d = \frac{1}{2} - \frac{2}{3} \sin^2(\theta_W) \qquad C_{2d} = 2 g_V^e g_A^d = \frac{1}{2} - 2 \sin^2(\theta_W)$ $C_{3d} = -2 g_A^e g_A^d = -\frac{1}{2}$

UNIVERSITY of VIRGINIA

Xiaochao Zheng, APS April Meeting, Session E11

https://arxiv.org/abs/2103.12555

Current Knowledge on C

all are 68% C.L. limit

UNIVERSITY / VIRGINIA

Xiaochao Zheng, APS April Meeting, Session E11

Asymmetries in Lepton – Nucleus DIS

$$A_{RL}^{e^{\pm}} = \frac{\sigma_{R}^{e^{\pm}} - \sigma_{L}^{e^{\pm}}}{\sigma_{R}^{e^{\pm}} + \sigma_{L}^{e^{\pm}}}$$

$$(A_{RL}^{e^{\pm}} = -A_{LR}^{e^{\pm}})$$

$$A_{RL}^{e^{+}e^{-}} = \frac{\sigma_{R}^{e^{+}} - \sigma_{L}^{e^{-}}}{\sigma_{R}^{e^{+}} + \sigma_{L}^{e^{-}}}$$

$$(A_{RL}^{e^{+}e^{-}} \neq -A_{LR}^{e^{+}e^{-}})$$

$$A_{RR}^{e^{+}e^{-}} = \frac{\sigma_{R}^{e^{+}} - \sigma_{R}^{e^{-}}}{\sigma_{R}^{e^{+}} + \sigma_{R}^{e^{-}}}$$

$$(A_{RR}^{e^{+}e^{-}} \neq A_{LL}^{e^{+}e^{-}})$$

$$A_{unpol}^{e^{+}e^{-}} = \frac{\sigma_{R}^{e^{+}} - \sigma_{R}^{e^{-}}}{\sigma_{R}^{e^{+}} + \sigma_{R}^{e^{-}}}$$

In the Parton Model

$$\begin{split} A_{RL}^{e^{*}} &= \frac{\sigma_{R}^{e^{*}} - \sigma_{L}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{L}^{e^{*}}} & A_{d} = |\lambda|(108 \ ppm) Q^{2}[(2 \ C_{1u} - C_{1d}) + Y(y)(2 \ C_{2u} - C_{2d}) R_{V}(x)] \\ (A_{RL}^{e^{*}} &= -A_{LR}^{e^{*}}) & \text{beam polarization} & Y(y) = \frac{1 - (1 - y)^{2}}{1 + (1 - y)^{2}} \quad R_{V}(x) = \frac{u_{V}(x) + d_{V}(x)}{u(x) + \overline{u}(x) + d(x) + \overline{d}(x)} \\ (\text{indicates spin flip of quarks}) & y = \frac{E - E'}{E} \\ (A_{RL}^{e^{*}} e^{*} - A_{LR}^{e^{*}}) & A_{RR}^{e^{*}} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{L}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{L}^{e^{*}}} \\ (A_{RR}^{e^{*}} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{L}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} \\ (A_{RR}^{e^{*}} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} \\ A_{unpol}^{e^{*}} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} \\ A_{unpol}^{e^{*}} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} \\ A_{unpol}^{e^{*}} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} \\ A_{unpol}^{e^{*}} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} \\ A_{unpol}^{e^{*}} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} \\ A_{unpol}^{e^{*}} e^{*} e^{*} = \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} \\ A_{unpol}^{e^{*}} e^{*} e^{*} e^{*} \\ A_{unpol}^{e^{*}} e^{*} e^{*} e^{*} e^{*} \\ A_{unpol}^{e^{*}} e^{*} e^{*} e^{*} \\ A_{unpol}^{e^{*}} e^{*} e^{*} e^{*} e^{*} \\ A_{unpol}^{e^{*}} e^{*} e^{*} e^{*} e^{*} \\ A_{unpol}^{e^{*}} e^{*} e^{*} e^{*} e^{*} e^{*} e^{*} \\ A_{unpol}^{e^{*}} e^{*} e^{*} e^{*} e^{*} e^{*} e^{*} \\ A_{unpol}^{e^{*}} e^{*} e^{*} e^{*} e^{*} e^{*} e^{*} e^{*} e^{*} \\ A_{unpol}^{e^{*}} e^{*} \\ A_{unpol}^{e^{*}} e^{*} e^{*}$$

In the Parton Model

$$\begin{split} A_{RL}^{e^{*}} &= \frac{\sigma_{R}^{e^{*}} - \sigma_{L}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{L}^{e^{*}}} & A_{d} = |\lambda|(108 \ ppm) Q^{2}[(2 \ C_{1u} - C_{1d}) + Y(y)(2 \ C_{2u} - C_{2d}) R_{V}(x)] \\ (A_{RL}^{e^{*}} &= -A_{LR}^{e^{*}}) & \text{beam polarization} & Y(y) = \frac{1 - (1 - y)^{2}}{1 + (1 - y)^{2}} R_{V}(x) = \frac{u_{V}(x) + d_{V}(x)}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \\ (\text{indicates spin flip of quarks}) & (\text{indicates spin flip of quarks}) \\ A_{RL}^{e^{*}} &= \frac{\sigma_{R}^{e^{*}} - \sigma_{L}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{L}^{e^{*}}} & A_{RL,d}^{e^{*}} = (108 \ ppm) Q^{2} Y(y) R_{V}(x) [1\lambda|(2 \ C_{2u} - C_{2d}) - (2 \ C_{3u} - C_{3d})] \\ (A_{RL}^{e^{*}} &= -A_{LR}^{e^{*}}) & (\text{flip } |\lambda| \text{ for LR}) \\ A_{RR}^{e^{*}} &= \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} & A_{RR,d}^{e^{*}} = (108 \ ppm) Q^{2} [1\lambda|(2 \ C_{1u} - C_{1d}) - Y(y) R_{V}(x)(2 \ C_{3u} - C_{3d})] \\ (A_{RR}^{e^{*}} &= -A_{LR}^{e^{*}e^{*}}) & (\text{flip } |\lambda| \text{ for LL}) \\ A_{unpol}^{e^{*}} &= \frac{\sigma_{R}^{e^{*}} - \sigma_{R}^{e^{*}}}{\sigma_{R}^{e^{*}} + \sigma_{R}^{e^{*}}} & A_{d}^{e^{*}e^{*}} = -(108 \ ppm) Q^{2} Y(y) R_{V}(x)(2 \ C_{3u} - C_{3d}) \\ \end{array}$$

UNIVERSITY / VIRGINIA Xiaochao Zheng, AP

Xiaochao Zheng, APS April Meeting, Session E11

In the Parton Model

$$A_{RL}^{e^*} = \frac{\sigma_{R}^{e^*} - \sigma_{L}^{e^*}}{\sigma_{R}^{e^*} + \sigma_{L}^{e^*}} \qquad A_{d} = |\lambda|(108 \ ppm) Q^{2}[(2 \ C_{1u} - C_{1d}) + Y(y)(2 \ C_{2u} - C_{2d}) R_{V}(x)]$$

$$(A_{RL}^{e^*} = -A_{LR}^{e^*}) \qquad \text{beam polarization} \qquad Y(y) = \frac{1 - (1 - y)^{2}}{1 + (1 - y)^{2}} \quad R_{V}(x) = \frac{u_{V}(x) + d_{V}(x)}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)}$$

$$(\text{indicates spin flip of quarks}) \qquad (\text{indicates spin flip of quarks})$$

$$A_{RL}^{e^*} = \frac{\sigma_{R}^{e^*} - \sigma_{L}^{e^*}}{\sigma_{R}^{e^*} + \sigma_{L}^{e^*}} \qquad (\text{flip } |\lambda| \text{ for LR}) \qquad \text{"B" in CERN measurement}}$$

$$A_{RR}^{e^*e^*} = \frac{\sigma_{R}^{e^*} - \sigma_{R}^{e^*}}{\sigma_{R}^{e^*} + \sigma_{R}^{e^*}} \qquad A_{RR, d}^{e^*e^*} = (108 \ ppm) Q^{2}[|\lambda|(2 \ C_{1u} - C_{1d}) - Y(y) R_{V}(x)(2 \ C_{3u} - C_{3d})]$$

$$(A_{RR}^{e^*e^*} = -A_{LL}^{e^*e^*}) \qquad (\text{flip } |\lambda| \text{ for LL}) \qquad \text{not "charge conjugation" asymmetry}}$$

$$A_{unpol}^{e^*e^*} = -(108 \ ppm) Q^{2}Y(y) R_{V}(x)(2 \ C_{3u} - C_{3d})$$

$$(\text{indicates transmitted in the event of the even$$

Designing the Experiment

Need high Q^2 , high $Y(y) \rightarrow SoLID PVDIS$ configuration is ideal

Need positron beam → PEPPo: up to 5uA for unpolarized, much lower for polarized. We will ask for 3uA, 88 days 11 GeV, some 6.6 GeV

Need positron detection \rightarrow reverse magnet polarity of SoLID, run magnets always at full saturation (field difference < 1E-5)

For each of e+ and e- run, also need reverse polarity runs to determine pair production background (8 of 88 days)

Experimental challenges:

- Ebeam, luminosity, charged pion and pair production background

Theoretical challenges:

- higher-order QED corrections
- higher-twist

im

UNIVERSITY of VIRGINIA

Xiaochao Zheng, APS April weeting, Session LII

What can we do with 80 days of 3uA beam? (in absence of all challenges):

if we only consider statistics and assume A=0 at $Q^2=0$:

1.5 ± 0.007

UNIVERSITY of VIRGINIA

Xiaocnao Zneng, APS April Meeting, Session E11

Experimental Challenges

assuming: Luminosity difference up to 1% (not shown)

 ± 0.032

Ebeam difference up to 5E-4 (the unknown part)

Eprime difference up to 1E-5

UNIVERSITY of VIRGINIA

Xiaocnao ∠neng, APS April ivieeting, Session EII

Theoretical Challenges

QED NLO term (/5 !)

We used DJANGOH, a Monte Carlo program developed for HERA and modified for fixedtarget experiments, just to have a sense how big the contribution is.

→ need to know to
 1% for a
 meaningful
 extraction of C3q

UNIVERSITY / VIRGINIA

λiaocnao ∠neng, APS April Meeting, Session EII

More Theoretical Challenges

Higher twists! - most PVDIS studies focused on the c_1 term and found 10⁻³ effects.

https://arxiv.org/abs/0710.0124

e-Print: 1602.03154 [hep-ph]

- browsing through citations of this paper, I did not find any newer work on H3nu
- studied effect on asymmetries
- apply HT term and refit \rightarrow \pm

$$+$$
 ±0.065?

Summary

- Exploratory measurement of e+ vs. e- DIS asymmetries using SoLID and a positron beam at JLab
- If all experimental systematic effects and QED higher order correction can be controlled or understood (1%), can provide the first direct measurement of the AA electron-quark effective couplings,
- total uncertainty can reach $2C_{3u}^{eq}-C_{3d}^{eq}=1.5\pm0.104$? recall:
- New physics mass limit:

$$\Lambda_{AA} = v \sqrt{\frac{\sqrt{5} 8 \pi}{\left| (2 C_{3u} - C_{3d}) \right|}} \approx 5.7 \,\text{TeV}$$

 $2C_{3u}^{\mu q} - C_{3d}^{\mu q} = 1.57 \pm 0.38$

- Take this to the EIC? (higher Q^2 , less QED, maybe comparable to EW, but low y - big problem)

What about C_{3q} ?

B [%

1983 CERN, using polarized μ + vs. μ - beams:

6 January 1983

120 GeV

Fig. 2. The *B* asymmetry from $\gamma - Z^0$ interference to first order, calculated for a polarization $\lambda = 0.81$ and $\sin^2 \theta_W = 0.23$ (solid line), and the asymmetry expected from higher order electromagnetic processes at beam energies of 120 GeV (dashed line) and 200 GeV (dashed-dotted line).

Fig. 3. The measured B asymmetry after radiative corrections at 120 GeV and 200 GeV beam energy versus $g(y)Q^2 = Q^2$ × $[1 - (1 - y)^2]/[1 + (1 - y)^2]$ [eq. (3)]. For the 120 GeV data, circles represent data with $Q^2 > 15$ GeV. Solid lines are

But a measurement for the electron is highly desired (and not just because of the muon g-2 release, the LHCb's beauty quark decay observation...)

UNIVERSITY / VIRGINIA Xiaochao Zheng, APS April Meeting, Session E11

Full expression in parton model

For the deuterium, adding s and c:

$$A_{d} = (540 \ ppm) Q^{2} \frac{2 C_{1u} [1 + R_{c}(x)] - C_{1d} [1 + R_{s}(x)] + Y(y) [2 C_{2u} (1 + \epsilon_{c}) - C_{2d} (1 + \epsilon_{s})] R_{v}(x)}{5 + R_{s}(x) + 4 R_{c}(x)}$$

$$A_{d}^{e^{+}e^{-}} = -(540 \ ppm)Q^{2} \frac{Y(y)[2C_{3u}(1+\epsilon_{c})-C_{3d}(1+\epsilon_{s})]R_{V}(x)}{5+R_{S}(x)+4R_{C}(x)}$$

$$R_{s}(x) = \frac{2[s(x) + \bar{s}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \qquad R_{c}(x) = \frac{2[c(x) + \bar{c}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \qquad \epsilon_{c(ors)} = \frac{2[c(x) - \bar{c}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)}$$

(done)

(done) The general case

For PVDIS:

based on Anselmino et al. [arXiv:hep-ph/9401264] also in Hobb et al. arXiv:0801.4791; Brady et al.[arXiv:1108.4734 [hep-ph]].

$$A_{RL}^{e^{-}} = \frac{|\lambda| \eta_{\gamma Z} \left[g_{A}^{e} 2 y F_{1}^{\gamma Z} + g_{A}^{e} \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2} xy}{Q^{2}} \right) F_{2}^{\gamma Z} + g_{V}^{e} (2-y) F_{3}^{\gamma Z} \right]}{2 y F_{1}^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2} xy}{Q^{2}} \right) F_{2}^{\gamma} - \eta_{\gamma Z} \left[g_{V}^{e} 2 y F_{1}^{\gamma Z} + g_{V}^{e} \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2} xy}{Q^{2}} \right) F_{2}^{\gamma Z} + g_{A}^{e} (2-y) F_{3}^{\gamma Z} \right]}$$

For A^{e+e-}:

 $\eta_{\gamma Z} = \frac{G_F Q^2}{2\sqrt{2} \pi \alpha} \frac{M_Z^2}{M_Z^2 + Q^2}$

$$A_{RL}^{e^{+}e^{-}} = \frac{\eta_{\gamma Z} \left(|\lambda| g_{V}^{e} + g_{A}^{e} \right) (2 - y) F_{3}^{\gamma Z}}{2 y F_{1}^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2 M^{2} xy}{Q^{2}} \right) F_{2}^{\gamma} - \eta_{\gamma Z} \left(g_{V}^{e} + g_{A}^{e} \right) \left[2 y F_{1}^{\gamma Z} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2 M^{2} xy}{Q^{2}} \right) F_{2}^{\gamma Z} \right]}$$

$$A_{RR}^{e^{-}} = \frac{\eta_{\gamma Z} g_{A}^{e} \left[-|\lambda| 2 y F_{1}^{\gamma Z} - |\lambda| \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2} xy}{Q^{2}} \right) F_{2}^{\gamma Z} + (2-y) F_{3}^{\gamma Z} \right]}{2 y F_{1}^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2} xy}{Q^{2}} \right) F_{2}^{\gamma} - \eta_{\gamma Z} g_{V}^{e} \left[2 y F_{1}^{\gamma Z} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2} xy}{Q^{2}} \right) F_{2}^{\gamma Z} + (2-y) F_{3}^{\gamma Z} \right]}$$