FIRST MEASUREMENT OF THE FLAVOR DEPENDENCE OF NUCLEAR PDF MODIFICATION USING PARITY-VIOLATING DEEP INELASTIC SCATTERING

Rakitha Beminiwattha Louisiana Tech University rakithab@latech.edu

June 11, 2021

OUTLINE

- Motivation
- Proposed Experiment
- Projected Results and Systematics

COLLABORATION

SPOKESPEOPLE

J. Arrington, R. Beminiwattha, D. Gaskell, J Mammei, P. Reimer

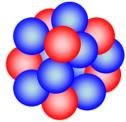
J. Arrington* J. S. Li, F. Sichtermann, Y. Mei Lawrence Berkeley National Laboratory R. Beminiwattha*, S. P. Wells, N. Simicevic Louisiana Tech University D. Gaskell*, J. Benesch, A. Camsonne, J. P. Chen, S. Covrie, J.-O. Hansen, C. E. Keppel, and M.-M. Dalton, R. Michaels Thomas Jefferson National Accelerator Facility J. Mammei*, W. Deconinck, M. Gericke, P. Blunden University of Manitoba P. E. Reimer*, W. R. Armstrong, I. C. Cloet Argonne National Laboratory S. Barkanova Acadia University California State University, Los Angeles D. S. Armstrong College of William and Mary H. Gao, X. Li, T. Liu, C. Peng, W. Xiong, X. Yan, and Z. Zhao Duke University P. Markowitz and M. Sargsian Florida International University A. Alekseievs Grenfell Campus of Memorial University D. McNulty Idaho State University V Bellini C Sutera INFN - Sezione di Catania J. Beričič, S. Širca, and S. Štajner Jožef Stefan Institute and University of Ljubljana, Slovenia

J. Dunne, D. Dutta and L. El Fassi Mississippi State University P. M. King and J. Roche Ohio University, Athens, Ohio M. Hattawy Old Dominion University, Norfolk, Virginia R. Gilman, K. E. Mesick Rutgers University A. Deshpande, C. Gal, N. Hirlinger Saylor, T. Kutz, and Y.X. Zhao Stony Brook University R. Holmes and P. Souder Syracuse University A. W. Thomas University of Adelaide, Australia Y. Kolomensky University of California, Berkeley A. J. Puckett University of Connecticut K. S. Kumar, R. Miskimen University of Massachusetts, Amherst N Fomin University of Tennessee, Knowille X. Bai, D. Di, K Gnanvo, C. Gu, N. Livanage, H. Nguven, K. D. Paschke, V. Sulkosky, and X. Zheng

University of Virginia

N. Kalantarians Virginia Union University

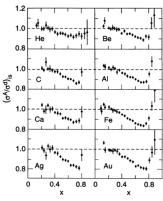
and the SoLID Collaboration


From QCD to Nucleons and Nuclei

AN OPEN AND IMPORTANT QUESTIONS

- ► How protons and neutrons are modified when they are bound in a nucleus?
- How we make the transition between QCD and nuclear physics?

But our effective nuclear theories are based around the concept that nucleons in the nuclear environment strongly maintain their identities

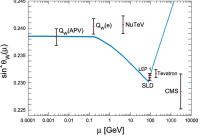


EMC Effect

NUCLEAR MODIFICATION

- ► First observed in 1984 by EMC collaboration
- ► Showed reduced presence of partons in 0.3 < *x* < 0.7
- Generally greater effect as one pushes to higher A
- Not due to simple binding effects real modification of structure

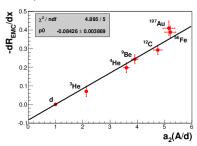
J. Gomez et *al., PRD49 4348* (1994)

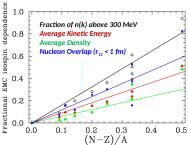

ISOVECTOR DEPENDENCE IN NUTEV ANOMALY

 Neutrino scattering (charged current and neutral current) is sensitive to different flavor combinations

Pachos-Wolfenstein relation:

$$R_{\text{PW}} \equiv \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X) - \sigma(\bar{\nu}_{\mu}N \to \bar{\nu}_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X) - \sigma(\bar{\nu}_{\mu}N \to \mu^{+}X)} \stackrel{\text{3.25}}{\sim} 0.235}$$

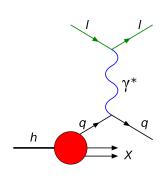

$$= \lim_{\text{\to i.s.}} \frac{1}{2} - \sin^{2}\theta_{W}$$



- ► The impact of the flavor-dependent nuclear PDF modification on the NuTeV anomaly was evaluated in the Cloët-Bentz-Thomas (CBT) model
- CSV or Isovector EMC (IVEMC) could play very important role and are not well constrained by data

ISOVECTOR DEPENDENCE? - SRC

- ▶ SRC show strong preference to n-p pairs over p-p pairs
- ► Left Plot: The slope of the EMC effect plotted versus the SRC scaling factor
- Right Plot: Isospin dependence of the EMC effect vs. fractional neutron excess of the nucleus for the four scaling models
- Unfortunately have a limited direct sensitivity to the flavor dependence of the EMC effect

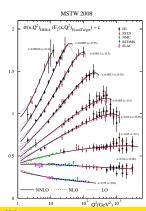

DIS

DIS with leptons offers picture into partonic distributions

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha E'^2}{Q^4}\cos^2\frac{\theta}{2}\left(\frac{F_2(x,Q^2)}{\nu} + \frac{2F_1(x,Q^2)}{M}\tan^2\frac{\theta}{2}\right)$$

- Highly successful for our modern picture of quark degrees of freedom and pQCD
- PDFs have been well determined over a broad range after decades of study
 Structure Function (SF),

$$F_2(x, Q^2) = x \sum_q e_q^2 (q(x, Q^2) + \bar{q}(x, Q^2))$$



DIS with leptons offers picture into partonic distributions

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha E'^2}{Q^4}\cos^2\frac{\theta}{2}\left(\frac{F_2(x,Q^2)}{\nu} + \frac{2F_1(x,Q^2)}{M}\tan^2\frac{\theta}{2}\right)$$

- Highly successful for our modern picture of quark degrees of freedom and pQCD
- PDFs have been well determined over a broad range after decades of study Structure Function (SF),

$$F_2(x, Q^2) = x \sum_q e_q^2 (q(x, Q^2) + \bar{q}(x, Q^2))$$

FLAVOR DEPENDENCE OBSERVATIONS WITH PVDIS

PVDIS proves new flavor combinations \rightarrow isovector properties

$$A_{\text{PV}} \sim \frac{\left| \left| \left| \left| \left| \left| \right| \right| \right|^{x}}{\left| \left| \left| \left| \left| \right| \right| \right|^{2}} \sim 100 - 1000 \text{ ppm} \right|$$

$$\approx -\frac{G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} \left[a_{1}(x) + \frac{1 - (1 - y)^{2}}{1 + (1 - y)^{2}} a_{3}(x) \right], y = 1 - \frac{E'}{E}$$

$$\sum_{i=1}^{n} C_{i} a_{i} \left(q + \overline{q} \right) = \sum_{i=1}^{n} C_{i} a_{i} \left(q - \overline{q} \right)$$

$$a_1(x) = 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})}$$

EFFECTIVE WEAK COUPLINGS $C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W = -0.19 \quad C_{2u} = -\frac{1}{2} + 2\sin^2\theta_W = -0.03$ $C_{1d} = \frac{1}{2} - \frac{2}{3}\sin^2\theta_W = 0.34 \quad C_{2d} = \frac{1}{2} + 2\sin^2\theta_W = 0.03$

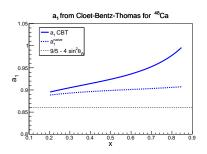
FLAVOR DEPENDENCE OBSERVATIONS WITH PVDIS

PVDIS proves new flavor combinations \rightarrow isovector properties

$$\begin{aligned} A_{\mathrm{PV}} \sim & \frac{\left| \left| \left| \left| \left| \right| \right|^{*} \right| \right|}{\left| \left| \left| \right|^{2}} \sim 100 - 1000 \mathrm{\ ppm} \end{aligned}$$

$$\approx -\frac{G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} \left[a_{1}(x) + \frac{1 - (1 - y)^{2}}{1 + (1 - y)^{2}} a_{3}(x) \right], y = 1 - \frac{E'}{E}$$

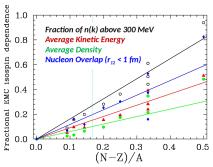
Symmetric nucleus limit

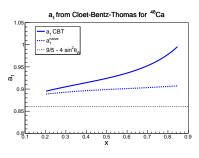

$$a_1 \simeq \frac{9}{5} - 4\sin^2\theta_W - \frac{12}{25} \frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} + \dots$$

where $u_A=u$ in p , u in n and $q^\pm=q(x)\pm ar q(x)$

Modeling - CBT Model

- ► Cloet et *al.* make predictions based on mean field calculations which give reasonable reproductions of SFs
- Explicit isovector terms are included constrained by nuclear physics data such as the symmetry energy
- ▶ Few percent effect in a_1 , larger at larger x

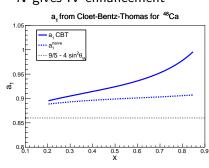




Cloet et al. PRL102 252301 (2009), Cloet et al. PRL109 182301 (2012)

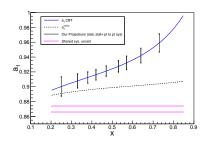
Modeling - Simple Scaling

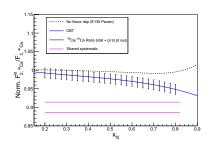
➤ simple scaling models yield a results varying from 50% to 110% of the CBT calculation



Where to get constraint

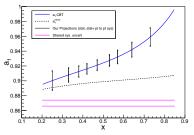
- Neutral currents will provide access to isovector observables
- lacktriangle Present data demands $\sim 1\%$ level for significant tests
- ▶ LD₂ will constrain CSV as isoscalar target (as well as $R^{\gamma Z}$)
- Asymmetric target will test isovector (IV) dependence larger A gives larger EMC, larger Z N gives IV enhancement


Symmetric nucleus limit


$$a_1 \simeq rac{9}{5} - 4 \sin^2 heta_W - rac{12}{25} rac{u_A^+ - d_A^+}{u_A^+ + d_A^+} + ...$$

PVEMC vs. $^{48}CA/^{40}CA$ RATIOS

PVDIS offers highest sensitivity and is required for full picture

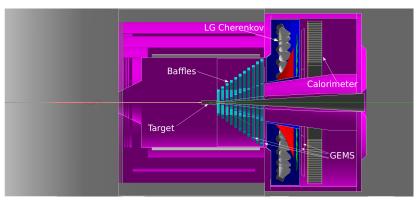




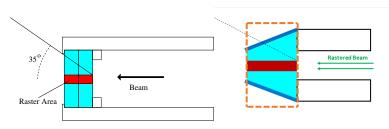
	PVEIVIC	EIVIC
	(this prop.)	E12-10-008
Statistics	0.7-1.3%	0.8-1.1%
Systematics	0.5%	0.7%
Normalization	0.4%	1.4%
slope in x	3.7σ	2.0σ
slope in high-x values	5.5σ	2.1σ
data vs. null hypothesis	6.2σ	$< 2\sigma$
min vs. max flavor dependence	4.4σ	N/A

PVEMC vs. ⁴⁸Ca/⁴⁰Ca Ratios

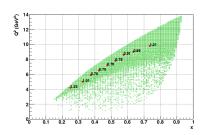
PVDIS offers highest sensitivity and is required for full picture

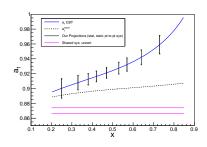


- ▶ PVDIS naturally sensitive to flavor *differences*
- DIS and PVDIS allows for flavor determination
- lacktriangle Other processes such as tagged SIDIS and π Drell-Yan offer complementary information
- Experiments such as SRC help motivate and tie into this program


SoLID Configuration

- Experimental configuration practically identical to approved SoLID PVDIS measurement
- Lead baffles serve as momentum collimators
- ► GEMs, Cherenkov, and calorimeter provide tracking and PID
- Rates are better or comparable to existing LD₂ measurement


Target - 48 Ca


- ightharpoonup ⁴⁸Ca target provides good balance between asymmetric target and not too high Z
- Has very good thermal conductance and high melting point have operational experience with previous program including CREX
- ▶ 12% radiator photons and photoproduced pions are main background concerns
- ▶ We propose to use a 2.4 g/cm² ⁴⁸Ca target (reduced volume design on right), assumed to be 95% isotopically pure.

PROJECTIONS

- ▶ Requesting 66 days at 80 μ A 11 GeV production (81 days total) to get \sim 1% stat uncertainties across a broad range of x
- ► In the context of the CBT model, this is few sigma in very simple interpolation model
- This provides new and useful constraints in a sector where there is little data

SITE BOUNDARY

Experiment	Hall Top	Estimated	Measured
	Neutron	Boundary	Boundary
	Dose	Dose	Dose
	(m^{-2})	(mrem)	(mrem)
PREX-I	4.50E+12	4.2	1.3
PREX-II	5.80E+12	2.0	1.2
CREX	1.50E+13	1.8	1.0
LD-PVDIS 6 GeV	1.90E+12	0.7	n/a
LD-PVDIS 11 GeV	3.40E+12	1.3	n/a
⁴⁸ Ca-PVDIS 11 GeV	6.00E+12	2.5	n/a

These measurements have shown that Geant4 simulations have improved over the years to consistently match the expected boundary dose as shown

Systematics

- Pion Contamination
- lacktriangle Charge Symmetric Background $(\pi^0
 ightarrow e^+e^-\gamma)$
- Radiative Corrections
- Hadronic and Nuclear uncertainties (HT, CSV, PDF uncertainties, and free PDF nuclear model uncertainties)

BEAM TIME REQUEST

We request 66 days of production data at 11 GeV at 80 μA with full beam polarization. We also request time for commissioning, calibration and background runs, and polarimetry, summarized in Table

	Time (days)	E (GeV)	Current (μA)
⁴⁸ Ca Production	66	11	80
Optics	2	4.4	Up to 80
Positive polarity	4	11	80
Moller Polarimetry	4	11	2
Commissioning	5	11	Up to 80
Total	81		

Systematics and Experimental uncertainties

- Polarimetry and pions are main contributions
- Radiative working group has been established for PVDIS
- ► Total errors:

Effect	Uncertainty [%]
Polarimetry	0.4
$R^{\gamma Z}/R^{\gamma}$	0.2
Pions (bin-to-bin)	0.1-0.5
Radiative Corrections (bin-to-bin)	0.5-0.1
Total for any given bin	~0.5-0.7

Statistical uncertainty dominates any given bin

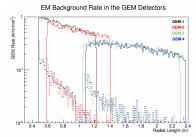
OUR MOTIVATION TO SUBMIT AGAIN

- ► The PAC 44 Proposal deferred by PAC in light of DIS the ⁴⁸Ca/⁴⁰Ca ratio measurement (E12-10-008)
- ▶ A detailed examination shows that the E12-10-008 48 Ca/ 40 Ca measurement cannot provide 3σ evidence for a flavor-dependent EMC effect unless the effect is significantly larger than any of the models we have considered
- We determined that no other measurement currently planned or under discussion can provide the sensitivity proposed by this measurement
- We show that the PVEMC measurement will be critical to understanding flavor dependence in nuclei no matter what is observed in the ⁴⁸Ca/⁴⁰Ca ratios
- Provided additional detail on the radiation in the hall and at the site boundary

SUMMARY

- Nuclear modification has many open important questions for our understanding of QCD
- PVDIS on asymmetric targets offers best opportunity to uncover isovector dependence in modification
- 66 days production will offer critical new information, help test leading hypotheses, and help resolve the NuTeV anomaly
- ► The first direct and precise measurement of the flavor dependence will motivate calculations that explicitly attempt to account for flavor or isospin dependence.

BACKUP


PAC PREVIOUS STATUS

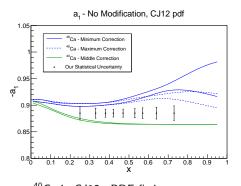
- PAC 42 Deferred
 - "novel and well developed proposal"
 - Site boundary limits were a concern
 - Cross section measurement sensitivity wasn't formally studied
- ► PAC 44 Deferred Again

 - ► Informally workshop to organize between efforts and converge theory, radiation effects on the hall, target cost
 - Full report not out usually six weeks or so after PAC

RATES AND BACKGROUNDS

- Trigger defined by coincidence between Cherenkov and shower
 150 kHz total anticipated with background (well below SoLID spec)
- Pion contamination no worse than 4% in any given bin (worst at high x)
- GEM rates comparable to or smaller than design for LD₂

Particle	DAQ Coin. Trig.Rate (kHz)		
	P > 1 GeV	P > 3 GeV	
DIS e ⁻	144	61	
π^-	11	7	
π^+	0.4	0.2	
Total	155	68	


SITE BOUNDARY - SOLENOID SHIELDING

Iron of magnet is significant shield of neutrons that contribute to site boundary limits

	⁴⁸ Ca	⁴⁸ Ca Dose	LD_2	LD_2 Dose
	Flux	(80 μA for	Flux	(50 μA for
	$(\mathrm{Hz}/\mu\mathrm{A})$	66 days) (m^{-2})	$({\rm Hz}/\mu{\rm A})$	60 days) (m^{-2})
with Solenoid	2.93E+07	6.02E+12	2.62E+07	3.36E+12
Self- Shielding				
without Solenoid	5.55E+08	1.14E+14	3.53E+08	4.53E+13
Self- Shielding				

Calculated to be factor of 2 smaller than CREX

WHY NOT ⁴⁰CA?

⁴⁰Ca in CJ12 nPDF fit is green curve

- Would require similar beamtime commitment (60 days)
- ▶ ⁴⁰Ca tests isoscalar prediction but isoscalar PDFs significantly cancel!
- Existing SoLID program has LD₂ planned which is sensitive to and constrains on a similar level effects such as charge symmetry violation
- ⁴⁰Ca would be useful if we need to search for effects such as modification-induced CSV - presently hard to argue for a commitment

INDUCED RADIATION

Radiation from this experiment is on the level of the existing $\ensuremath{\mathsf{LD}}_2$ measurement

		Radiation Power in the Ha	
Radiation	E-Range	⁴⁸ Ca	LD_2
Туре	(MeV)	$(W/\mu A)$	$(W/\mu A)$
e [±]	E < 10	0.11	0.11
	E > 10	0.18	0.16
n	E < 10	0.0002	0.0003
	E > 10	0.005	0.010
γ	E < 10	0.02	0.02
	E > 10	0.04	0.04

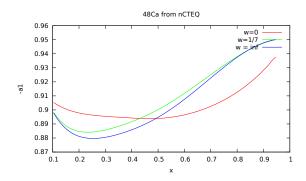
SITE BOUNDARY

Iron of magnet is significant shield of neutrons that contribute to site boundary limits

		J		
	⁴⁸ Ca	⁴⁸ Ca Dose	LD_2	LD_2 Dose
	Flux	(80 μA for	Flux	(50 μA for
	$(Hz/\mu A)$	60 days) (m^{-2})	$(\mathrm{Hz}/\mu\mathrm{A})$	60 days) (m^{-2})
with Solenoid	2.93E+07	6.02E+12	2.62E+07	3.36E+12
Self- Shielding				
without Solenoid	5.55E+08	1.14E+14	3.53E+08	4.53E+13
Self- Shielding				

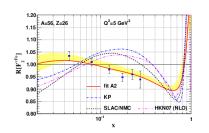
Calculated to be factor of 2 smaller than CREX

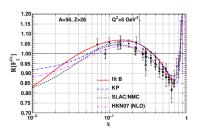
RADIATION ON ECAL


TABLE: Neutrons Flux at the Front of the ECAL

		⁴⁸ Ca	LD_2
	E range	Flux	Flux
	(MeV)	(Hz/cm2)	(Hz/cm2)
Neutrons	<i>E</i> < 10	1.68E+06	1.72E+06
	E > 10	3.66E+04	3.30E+04
Total		1.72E+06	1.75E+06

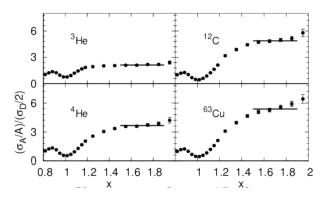
- ► Total dose (neutron and EM) similar to LD₂
- ► Estimated 100 kRad on active components


Modeling - NPDFs


- ightharpoonup Varying weights in fits between lepton/Drell Yan and ν can show tension between data sets
- nCTEQ fits show dramatic differences in a similar vein at CBT
- Few percent effect in a_2

ISOVECTOR DEPENDENCE IN NUCLEAR PDF

- ▶ Nuclear correction ratio for structure functions F_2^{Fe}/F_2^D
- Comparison between lepton/Drell Yan ($I^{\pm}A$) and neutrino (νA) data show significant discrepancies in nuclear corrections using common PDFs
- The nuclear corrections for the $I^{\pm}A$ and νA processes are different: Flavor dependent nuclear effects?



I. Schienbein et al. PRD77 054013 (2008); I. Schienbein et al. PRD80 094004 (2009)

ISOVECTOR DEPENDENCE? - SRC

- ▶ SRC show strong preference to n-p pairs over p-p pairs
- Also show strong correlation to "plateau" parameter for x>1 SFs

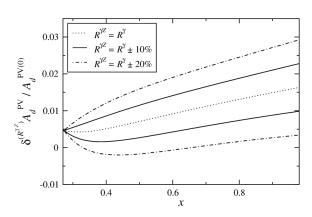
GEM RATES

GEM plane	LD ₂ background	⁴⁸ Ca EM background	⁴⁸ Ca EM background (no baffles)
	$(kHz/mm^2/\mu A)$	$(kHz/mm^2/\mu A)$	$(kHz/mm^2/\mu A)$
1	6.8	4.8	49.4
2	3.0	2.1	32.3
3	1.1	0.8	9.9
4	0.7	0.5	6.4

ECAL TRIGGER RATES

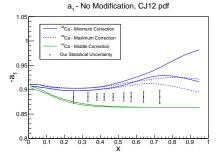
	£11	L. C. L.	1
region	full	high	low
	rate entering	${f g}$ the EC (kH	z)
e ⁻	240	129	111
π^-	5.9×10^{5}	3.0×10^{5}	3.0×10^{5}
π^+	2.7×10^{5}	$1.5 imes 10^5$	$1.2 imes 10^5$
$\gamma(\pi^0)$	7.0×10^{7}	3.5×10^{7}	3.5×10^{7}
p^+	4.8×10^{5}	$2.1 imes 10^5$	2.7×10^{5}
sum	7.1×10^{7}	3.6×10^{7}	3.6×10^{7}
	Rate for p <	< 1 GeV (kH	z)
sum	8.4×10^{8}	4.2×10^{8}	4.2×10^{7}
tr	igger rate for	p>1 GeV (kHz)
e ⁻	152	82	70
π^-	4.0×10^{3}	2.2×10^{3}	1.8×10^{3}
π^+	0.2×10^{3}	0.1×10^{3}	$0.1 imes 10^3$
$\gamma(\pi^0)$	3	3	0
p	1.6×10^{3}	0.9×10^{3}	0.7×10^{3}
sum	5.9×10^{3}	3.3×10^{3}	2.6×10^3
trigger rate for $p < 1$ GeV (kHz)			kHz)
sum	2.8×10^{3}	1.4×10^3	1.4×10^{3}
	Total trigg	er rate (kHz)
total	8.7×10^{3}	4.7×10^{3}	4.0×10^{3}

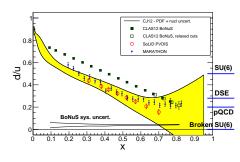
CERENKOV TRIGGER RATES


	Total Rate for $p>0.0~{\rm GeV}$	Rate for $p>3.0~{\rm GeV}$
	(kHz)	(kHz)
DIS	240	73
$\pi^ \pi^+$	5.9×10^{5}	1.6×10^{3}
π^+	2.7×10^{5}	40
$\gamma(\pi^0)$	7.0×10^{7}	40
p	4.8×10^{5}	4
Sum	7.1×10^{7}	1.7×10^{3}

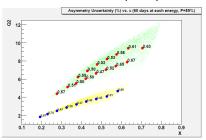
Trigger Rate from Cherenkov	(kHz)	
-----------------------------	-------	--

		,
	Trigger Rate for $p > 1.0 \text{ GeV}$	Trigger Rate for $p > 3.0 \text{ GeV}$
	(kHz)	(kHz)
DIS	223	66
π^-	193	49
$\pi^ \pi^+$	22	1.6
$\gamma(\pi^0)$	0	0
p	0	0
Sum	438	116


RADIATION


		Incident Radiation Power	
Radiation	E-Range	⁴⁸ Ca	LD_2
Туре	(MeV)	$(W/\mu A)$	$(W/\mu\mathrm{A})$
e^\pm	E < 10	0.13	0.13
	E > 10	0.19	0.17
n	E < 10	0.0001	0.0006
	E > 10	0.02	0.04
γ	E < 10	0.02	0.02
	E > 10	0.04	0.05

Systematics


- Many potential nuclear effects come into play as this sector is not presently well constrained
- Requires measurements from LD₂ and LH₂ for information on size of nuclear effects
- ightharpoonup Existing free PDFS (recent CJ12) have poor d/u constraint

Systematics

- ► Higher twist effects will also be constrained by LD₂ using same kinematics, but also 6.6 GeV beam
- Charge symmetry violation will also be explored to better precision
- ▶ Nuclear dependence of $R^{\gamma Z}$ is an open question

