Projected BSM constraints from SoLID in the Standard Model EFT framework

Frank Petriello

Boughezal, FP, Wiegand, PRD 104 (2021) 016005; arXiv:2104.03979

SoLID collaboration meeting

December 16, 2021

Model-independent searches for BSM

- No new particles found at the LHC! Need new experimental probes that can access regions of parameter space not covered at the LHC
- Model-independent approach: adapt an effective field theory framework that encapsulates a large swath of new physics models.
- Standard Model Effective Field Theory (SMEFT): all operators consistent with SM symmetries, containing SM particles, and assuming a mass gap to any new physics

(odd dimensions not considered here; lepton-number violating)

 $\Lambda \gg M_{SM}$, E

Expand in large Λ

Warsaw basis

 Complete and independent dim-6 basis known: 2499 baryon conserving operators for 3 fermion generations; (can reduce assuming minimal flavor violation to O(100)) Grzadkoswki, Iskrzynski, Misiak, Rosiek 1008.4884; Brivio, Jiang, Trott 1709.06492

• Dim-8 basis derived Li, Ren, Shu, Xiao, Yu, Zheng 2005.00008; Murphy 2005.00059

Dimension 6		Dimension 8		
$\mathcal{O}_{lq}^{(1)}$	$\left(\overline{l}\gamma^{\mu}l\right)\left(\overline{q}\gamma_{\mu}q\right)$	$\mathcal{O}_{l^2q^2D^2}^{(1)}$	$D^{ u}\left(\overline{l}\gamma^{\mu}l ight)D_{ u}\left(\overline{q}\gamma_{\mu}q ight)$	
$\mathcal{O}_{lq}^{(3)}$	$\left(\overline{l}\gamma^{\mu}\tau^{i}l\right)\left(\overline{q}\gamma_{\mu}\tau^{i}q\right)$	$\mathcal{O}_{l^2q^2D^2}^{(3)}$	$D^{\nu}\left(\bar{l}\gamma^{\mu}\tau^{i}l\right)D_{\nu}\left(\overline{q}\gamma_{\mu}\tau^{i}q\right)$	
\mathcal{O}_{eu}	$\left(\overline{e}\gamma^{\mu}e\right)\left(\overline{u}\gamma_{\mu}u\right)$	$\mathcal{O}^{(1)}_{e^2u^2D^2}$	$D^{\nu}\left(\overline{e}\gamma^{\mu}e\right)D_{\nu}\left(\overline{u}\gamma_{\mu}u\right)$	
\mathcal{O}_{ed}	$\left(\overline{e}\gamma^{\mu}e\right)\left(\overline{d}\gamma_{\mu}d\right)$	$\mathcal{O}^{(1)}_{e^2d^2D^2}$	$D^{\nu}\left(\overline{e}\gamma^{\mu}e\right)D_{\nu}\left(\overline{d}\gamma_{\mu}d\right)$	
\mathcal{O}_{lu}	$\left(\overline{l}\gamma^{\mu}l\right)\left(\overline{u}\gamma_{\mu}u\right)$	$\mathcal{O}_{l^2u^2D^2}^{(1)}$	$D^{\nu}\left(\overline{l}\gamma^{\mu}l\right)D_{\nu}\left(\overline{u}\gamma_{\mu}u\right)$	
\mathcal{O}_{ld}	$\left(\overline{l}\gamma^{\mu}l\right)\left(\overline{d}\gamma_{\mu}d\right)$	$\mathcal{O}_{l^2d^2D^2}^{(1)}$	$D^{ u}\left(\overline{l}\gamma^{\mu}l ight)D_{ u}\left(\overline{d}\gamma_{\mu}d ight)$	
\mathcal{O}_{qe}	$(\overline{q}\gamma^{\mu}q)(\overline{e}\gamma_{\mu}e)$	$\mathcal{O}_{q^2e^2D^2}^{(1)}$	$D^{\nu}\left(\overline{q}\gamma^{\mu}q\right)D_{\nu}\left(\overline{e}\gamma_{\mu}e\right)$	

Relevant operators for our analysis; note q,l are lefthanded doublets; e,u,d are right-handed singlets

Warsaw basis

- Complete and independent dim-6 basis known: 2499 baryon conserving operators for 3 fermion generations; (can reduce assuming minimal flavor violation to O(100)) Grzadkoswki, Iskrzynski, Misiak, Rosiek 1008.4884; Brivio, Jiang, Trott 1709.06492
- Dim-8 basis derived Li, Ren, Shu, Xiao, Yu, Zheng 2005.00008; Murphy 2005.00059

Structure of a SMEFT cross section:

Issues in SMEFT analyses

 Are there combinations of Wilson coefficients to which current probes are blind?

Azatov, Paul 1309.5273

$$\mathcal{L} = -c_t \frac{m_t}{v} \bar{t}th + \frac{g_s^2}{48\pi^2} c_g \frac{h}{v} G_{\mu\nu} G^{\mu\nu} \longrightarrow O_g(m_H) \approx \frac{g_s^2}{48\pi^2} (c_g + c_t) \frac{h}{v} G_{\mu\nu} G^{\mu\nu}$$

Flat direction: total cross section can't distinguish c_g , c_t ; need other observables such as Higgs p_T or ttH measurement

Such (approximate) flat directions appear in Drell-Yan as well

$$C_{ed} = \frac{Q_u e^2 - g_Z^2 g_L^u g_R^e}{Q_u e^2 - g_Z^2 g_R^e g_R^u} \frac{Q_d e^2 - g_Z^2 g_R^e g_R^d}{Q_d e^2 - g_Z^2 g_L^d g_R^e} C_{eu}$$

Drell-Yan cross section vanishes for $s \gg M_Z^2$ for this combination of parameters

Issues in SMEFT analyses

 Are there combinations of Wilson coefficients to which current probes are blind?
 Azatov, Paul 1309.5273

Connection to PV basis

 We can convert the SMEFT operators to a basis in terms of vector and axial couplings

$$\begin{split} \mathcal{L}_{\text{BSM}} &= \frac{G_F}{\sqrt{2}} \bigg[(\overline{e} \gamma^{\mu} \gamma_5 e) (C_{1u}^6 \overline{u} \gamma_{\mu} u + C_{1d}^6 \overline{d} \gamma_{\mu} d) + (\overline{e} \gamma^{\mu} e) (C_{2u}^6 \overline{u} \gamma_{\mu} \gamma_5 u + C_{2d}^6 \overline{d} \gamma_{\mu} \gamma_5 d) \\ &\quad + (\overline{e} \gamma^{\mu} e) (C_{Vu}^6 \overline{u} \gamma_{\mu} u + C_{Vd}^6 \overline{d} \gamma_{\mu} d) + (\overline{e} \gamma^{\mu} \gamma_5 e) (C_{Au}^6 \overline{u} \gamma_{\mu} \gamma_5 u) \\ &\quad + D^{\nu} \left(\overline{e} \gamma^{\mu} \gamma_5 e \right) D_{\nu} \left(\frac{C_{1u}^8}{v^2} \overline{u} \gamma_{\mu} u + \frac{C_{1d}^8}{v^2} \overline{d} \gamma_{\mu} d \right) + D^{\nu} \left(\overline{e} \gamma^{\mu} e \right) D_{\nu} \left(\frac{C_{2u}^8}{v^2} \overline{u} \gamma_{\mu} \gamma_5 u + \frac{C_{2d}^8}{v^2} \overline{d} \gamma_{\mu} \gamma_5 d \right) \\ &\quad + D^{\nu} \left(\overline{e} \gamma^{\mu} e \right) D_{\nu} \left(\frac{C_{Vu}^8}{v^2} \overline{u} \gamma_{\mu} u + \frac{C_{Vd}^8}{v^2} \overline{d} \gamma_{\mu} d \right) + D^{\nu} \left(\overline{e} \gamma^{\mu} \gamma_5 e \right) D_{\nu} \left(\frac{C_{Au}^8}{v^2} \overline{u} \gamma_{\mu} \gamma_5 u \right) \bigg]. \end{split}$$

•Full C coefficients are the sum of SM and dim-6 contributions:

$$\begin{aligned} C_{1u} &= C_{1u}^{SM} + C_{1u}^6 \\ & \text{etc.} \end{aligned}$$

Dim-8 has momentum dependence; negligible for SoLID kinematics

Connection to PV basis

Simple linear transformation between the PV and SMEFT bases:

$$\begin{split} C_{1u}^{6} &= \frac{v^{2}}{2\Lambda^{2}} \left\{ - \left(C_{lq}^{(1)} - C_{lq}^{(3)} \right) + C_{eu} + C_{qe} - C_{lu} \right\} \\ C_{2u}^{6} &= \frac{v^{2}}{2\Lambda^{2}} \left\{ - \left(C_{lq}^{(1)} - C_{lq}^{(3)} \right) + C_{eu} - C_{qe} + C_{lu} \right\} \\ C_{1d}^{6} &= \frac{v^{2}}{2\Lambda^{2}} \left\{ - \left(C_{lq}^{(1)} + C_{lq}^{(3)} \right) + C_{ed} + C_{qe} - C_{ld} \right\} \\ C_{2d}^{6} &= \frac{v^{2}}{2\Lambda^{2}} \left\{ - \left(C_{lq}^{(1)} + C_{lq}^{(3)} \right) + C_{ed} - C_{qe} + C_{ld} \right\} \\ C_{Vu}^{6} &= \frac{v^{2}}{2\Lambda^{2}} \left\{ \left(C_{lq}^{(1)} - C_{lq}^{(3)} \right) + C_{eu} + C_{qe} + C_{lu} \right\} \\ C_{Au}^{6} &= \frac{v^{2}}{2\Lambda^{2}} \left\{ \left(C_{lq}^{(1)} - C_{lq}^{(3)} \right) + C_{eu} - C_{qe} - C_{lu} \right\} \\ C_{Vd}^{6} &= \frac{v^{2}}{2\Lambda^{2}} \left\{ \left(C_{lq}^{(1)} + C_{lq}^{(3)} \right) + C_{eu} - C_{qe} - C_{lu} \right\} . \end{split}$$

Can analyze SoLID, other low-energy experiments, and LHC using either of these two bases.

Details of analysis

 We study potential future constraints arising from the SoLID and P2 experiments using projections in the literature:

SoLID: SoLID pre-CDR report (Nov 2019)

P2: arXiv: 1802.04759

- SoLID: deuteron target measurements used for BSM searches; sensitivity from region 0.4<x<0.5, Q²≈6 GeV². Total uncertainty, from both experiment and SM theory: 0.6%
- P2: following 1802.04759, projections includes Cesium APV, QWeak projection, E-158 constraints. Sensitive only to C₁ coefficients
- Turn on two coefficients at a time, to show correlations while allowing easy visualization

Example LHC data

1606.04266

$m_{\ell\ell}$	$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\ell\ell}}$	δ^{stat}	$\delta^{ m sys}$	δ^{tot}
[GeV]	[pb/GeV]	[%]	[%]	[%]
116–130	2.28×10^{-1}	0.34	0.53	0.63
130-150	1.04×10^{-1}	0.44	0.67	0.80
150-175	4.98×10^{-2}	0.57	0.91	1.08
175-200	2.54×10^{-2}	0.81	1.18	1.43
200-230	1.37×10^{-2}	1.02	1.42	1.75
230-260	7.89×10^{-3}	1.36	1.59	2.09
260-300	4.43×10^{-3}	1.58	1.67	2.30
300-380	1.87×10^{-3}	1.73	1.80	2.50
380-500	6.20×10^{-4}	2.42	1.71	2.96
500-700	1.53×10^{-4}	3.65	1.68	4.02
700-1000	2.66×10^{-5}	6.98	1.85	7.22
1000-1500	2.66×10^{-6}	17.05	2.95	17.31
500–700 700–1000 1000–1500	1.53×10^{-4} 2.66×10^{-5} 2.66×10^{-6}	3.65 6.98 17.05	1.68 1.85 2.95	4.02 7.22 17.31

- Originally designed to measure the photon PDF; necessitated high invariant mass and control over systematic errors
- Twelve invariant mass bins
- Higher LHC luminosity won't help much; already systematics dominated in many bins

Results: PV basis

- Note the elongated LHC ellipse; degeneracy in the Drell-Yan matrix elements; occurs at high m_{II} where BSM effects are largest
- P2 sensitive only to C₁ coefficients
- Important contributions from SoLID; constraints orthogonal to LHC constraints

Results: SMEFT basis

 Now consider an example in the SMEFT basis. Much stronger P2 constraints.

 Example of a generic trend: projected C₁ constraints from P2 are so strong that any SMEFT coefficient that has a projection into C₁ will be dominated by P2 bounds

Results: SMEFT basis

Results: Dimension-8

- Dimension-8 effects completely decouple in low-energy experiments; can help break degeneracies between dim-6 and dim-8 that occur at the LHC
- Here is an example where SoLID can help remove parameter space allowed with only LHC data

Results: positrons

Main points

- Low-energy parity violating experiments can probe BSM effects difficult to access at the LHC.
- The focus here has been on an EFT parameterization of fourfermion operators. Accessible with Drell-Yan at the LHC, but the structure of the DY matrix elements makes it blind to certain combinations of coefficients.
- •SoLID and P2 can provide orthogonal constraints that give a more complete coverage of the possible BSM parameters.
- •Can the coverage of parameter space be improved with LHC data alone? In principle yes, with precision measurements of new observables; angular distributions at high invariant mass can break the degeneracies that occur in DY.
- Higher energy or luminosity measurements of invariant mass or pT distributions alone won't help.