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Model-independent searches for BSM

®* No new particles found at the LHC! Need new experimental probes
that can access regions of parameter space not covered at the LHC

® Model-independent approach: adapt an effective field theory
framework that encapsulates a large swath of new physics models.

eStandard Model Effective Field Theory (SMEFT): all operators

consistent with SM symmetries, containing SM particles, and assuming a
mass gap to any new physics

NA>Msm, E
Expand in large A

Dimension-6 Dimension-8

(odd dimensions not considered here; lepton-number violating)
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Warsaw basis

e Complete and independent dim-6 basis known: 2499 baryon
conserving operators for 3 fermion generations; (can reduce
assuming minimal f|av0r ViOIatiOn to O( I OO)) Grzadkoswki, Iskrzynski, Misiak,

Rosiek 1008.4884; Brivio, Jiang, Trott 1709.06492

®Dim-8 basis derived L ren, shu, Xiao,Yu, Zheng 2005.00008; Murphy 2005.00059
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Relevant operators for our
analysis; note q,| are left-
handed doublets; e,u,d are
right-handed singlets



Warsaw basis

®Complete and independent dim-6 basis known: 2499 baryon
conserving operators for 3 fermion generations; (can reduce

assuming minimal flavor violation to O( I OO)) Grzadkoswki, Iskrzynski, Misiak,
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Structure of a SMEFT cross section:
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Leading SMEFT Sub-leading; neglected in many

correction analyses but shown to have significant
effects on LHC Drell-Yan fits

Boughezal, Mereghetti, FP2106.05337
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Issues in SMEFT analyses

e Are there combinations of Wilson coefficients to which
current probes are blind?

Azatov, Paul 1309.5273

Flat direction: total cross section can’t distinguish cg, c; need
other observables such as Higgs pt or ttH measurement

oSuch (approximate) flat directions appear in Drell-Yan as well

Drell-Yan cross section
vanishes for s>M=2 for this

combination of parameters
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Issues in SMEFT analyses

e Are there combinations of Wilson coefficients to which
current probes are blind?

Azatov, Paul 1309.5273
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Can remove these flat
directions with

experiments such as
SolLID

Flat directio
other obs

Cg, Cr; Need
isurement

oSuch (approxi Drell-Yan as well

Drell-Yan cross section
vanishes for s>M=2 for this

combination of parameters
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Connection to PV basis

*We can convert the SMEFT operators to a basis in terms
of vector and axial couplings
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Dim-8 has momentum
dependence; negligible
for SoLID kinematics




Connection to PV basis

oSimple linear transformation between the PV and SMEFT bases:

+ Ceu + qu - Clu
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®Can analyze SolLID, other low-energy experiments,and LHC
using either of these two bases.



Details of analysis

*We study potential future constraints arising from the SoLID
and P2 experiments using projections in the literature:

SoLID: SoLID pre-CDR report (Nov 2019)

P2: arXiv: 1802.04759

®SoLID: deuteron target measurements used for BSM searches;

sensitivity from region 0.4<x<0.5, Q2=6 GeV2.Total uncertainty,
from both experiment and SM theory: 0.6%

oP2: following 1802.04759, projections includes Cesium APV,
QWeak projection, E-158 constraints. Sensitive only to C)
coefficients

e Turn on two coefficients at a time, to show correlations while
allowing easy visualization



Example LHC data
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*Originally designed to measure the photon PDF; necessitated
high invariant mass and control over systematic errors

¢ Twelve invariant mass bins

*Higher LHC luminosity won’t help much; already systematics
dominated in many bins



_ Z'CZu o CZd

-0.08¢

-0.10

-0.12¢

-0.14}

LHC (Drell-Yan)
SolLID
P2 (all data)

LHC + P2 + SolLID

Results: PV basis
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®* Note the elongated LHC ellipse;
degeneracy in the Drell-Yan
matrix elements; occurs at high
mi where BSM effects are largest

* P2 sensitive only to C,
coefficients

® |mportant contributions from
SoLID; constraints orthogonal to
LHC constraints
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Results: SMEFT basis

| —— P2 (all data)
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LHC + SolLID

] ®*Now consider an example in

the SMEFT basis. Much
stronger P2 constraints.

| o Example of a generic trend:

projected C| constraints from
P2 are so strong that any
SMEFT coefficient that has a
projection into C; will be
dominated by P2 bounds



Results: SMEFT basis

| ®Here is an example in the

1 SMEFT basis where there is a
flat direction for P2. It occurs
because the chosen SMEFT
coefficients has a direction
where the C; is vector-like

| ®SoLID again provides
important information in this
=== LHC (Drell-Yan) 1 case
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Results: Dimension-8
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® Dimension-8 effects completely
decouple in low-energy
~0.685} experiments; can help break
degeneracies between dim-6 and
| dim-8 that occur at the LHC
-0.690
®*Here is an example where SoLID
can help remove parameter space
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Results: positrons
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| Positron (C; projection) | ® There is also a proposal to

P —— LHC+ SoLID { measure positron of deuterium

| | | | | | | to measure the electron-positron
asymmetry

| ® Gives access to

1.50.- GF - -
| | E%q(ev“%e)(qu])

1.45F

-. ® Already probed by LHC; SoLID
doesn’t add much
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Main points
* ow-energy parity violating experiments can probe BSM effects
difficult to access at the LHC.

® The focus here has been on an EFT parameterization of four-
fermion operators.Accessible with Drell-Yan at the LHC, but
the structure of the DY matrix elements makes it blind to
certain combinations of coefficients.

*SoLID and P2 can provide orthogonal constraints that give a
more complete coverage of the possible BSM parameters.

®Can the coverage of parameter space be improved with LHC
data alone? In principle yes, with precision measurements of
new observables; angular distributions at high invariant mass can
break the degeneracies that occur in DY.

*Higher energy or luminosity measurements of invariant mass or
pt distributions alone won'’t help.
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