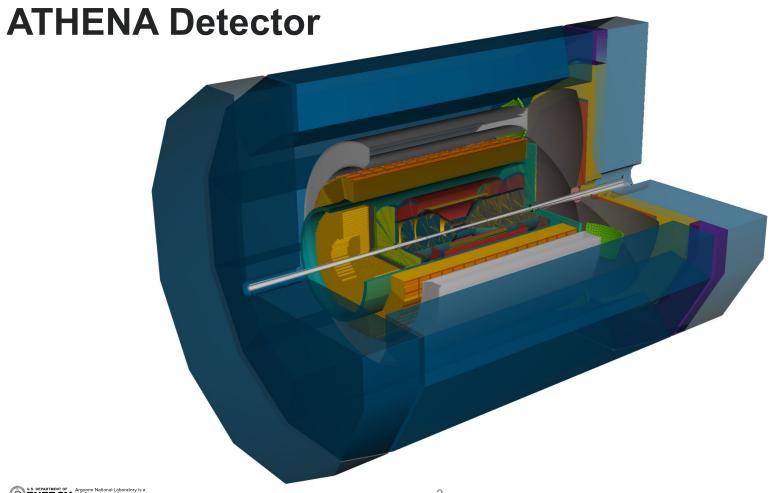


INTRODUCTION TO ATHENA SOFTWARE

CHAO PENG Argonne National Laboratory

For Athena Software Working Group



ATHENA Software

- Simulation with DD4hep <u>https://eicweb.phy.anl.gov/EIC/detectors/athena</u>
 - Subdetector plugins for Athena detector
- Data model: EICD <u>https://eic.phy.anl.gov/eicd</u>
 - Built upon PODIO
 - Flat data structure, connect tracks, hits, clusters with indices
- Analysis framework: Juggler <u>https://eicweb.phy.anl.gov/EIC/juggler</u>
 - Built upon GAUDI framework
 - Algorithms and tools for digitization, clustering, tracking, ...

SoLID with ATHENA Software

- It is a general software framework, so many pieces in it can be reused easily for SoLID
- What's in there
 - Working digitization, tracking, clustering, and so on
 - Many detector (tracker, calorimeter, RICH) plugins that can be modified easily
 - A SoLID repository with its major components (but unmaintained for a year) https://eicweb.phy.anl.gov/EIC/detectors/solid
- What's needed
 - Developing detailed detector plugins for SoLID
 - Optimizing algorithms for SoLID
 - Setup working benchmarks
 - All these works can be built upon existing ones

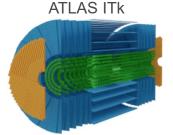
Acts for Tracking

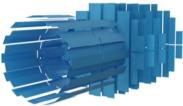
• Acts is a particle track reconstruction toolkit that is widely used in high energy physics

- Common algorithms for track propagation and fitting, seed finding, and vertexing
- Independent of tracking detectors
- Actively developing and well maintained
- Native support for geometry description using DD4hep

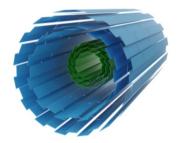
□ acts-project / acts			Q Notifications
<> Code 🕢 Issues 32 👬 Pu	ull requests 10 🖓 Discussions 🕞	Actions 🗐 Projects 🕕 Security 🔟 Insights	
	Pulse	Nov 8, 2015 – Jul 26, 2021	Contributions: Commits -
	Contributors	Contributions to main, excluding merge commits and bot accounts	
	Community		
	Commits		
	Code frequency	60	
	Dependency graph		
	Network		
	Forks	0 2015 2017 2018 2019 2020	2021
L			

5




Acts for Tracking

- Acts is a particle track reconstruction toolkit that is widely used in high energy physics
 - Common algorithms for track propagation and fitting, seed finding, and vertexing
 - Independent of tracking detectors
 - Actively developing and well maintained
 - Native support for geometry description using DD4hep


acts-project / acts			다. Notifications
<> Code ⊙ Issues 32 11 Pu	Il requests 10 🖓 Discussions 🕞) Actions 💾 Projects 🕕 Security 🔟 Insights	
	Pulse	Nov 8, 2015 – Jul 26, 2021	Contributions: Commits +
	Contributors	Contributions to main, excluding merge commits and bot accounts	
	Community		
	Commits		
	Code frequency		
	Dependency graph		
	Network		and here and a set of
	Forks	0 2016 2017 2018 2019 2020	2021

PANDA silicon detector

sPHENIX silicon trackers

Tracking Benchmarks

Using barrel trackers of the current Athena implementation

https://eicweb.phy.anl.gov/EIC/benchmarks/reconstruction_benchmarks/-/tree/master/benchmarks/tracking

- Also check track_finding, track_fitting benchmarks
- run_tracking_benchmarks.py

Simulation (particle gun)

```
48 if 'sim' in procs:
         # generate particles
         gen_cmd = ['python', gen_script, gen_file,
                 '-n', '{}'.format(args.nev),
                '-s', '{}'.format(args.seed),
                '--etamin', '{}'.format(args.etamin), '--etamax', '{}'.format(args.etamax),
                 '--pmin', '{}'.format(args.pmin), '--pmax', '{}'.format(args.pmax),
                 '--particles', args.particles]
         subprocess.run(gen cmd)
        # simulation
         sim cmd = ['npsim',
                '--part.minimalKineticEnergy' '1*TeV'.
                 '--numberOfEvents', '{}'.format(args.nev),
                '--runType' 'batch'
                '--inputFiles', gen_file,
                 '--outputFile', sim_file,
64
                 '--compact', args.compact,
                 '-v', 'WARNING']
         if args.seed > 0:
             sim cmd += ['--random.seed', args.seed]
68
         return code = subprocess.run(sim cmd).returncode
         if return_code is not None and return_code < 0:
             print("ERROR running simulation!")
             exit(1)
         subprocess.run(['rootls', '-t', sim_file])
```

Reconstruction (digi. + tracking) and analysis

75	if 'rec' in procs:
76	# export to environment variables (used to pass arguments to the option file)
77	os.environ['JUGGLER_SIM_FILE'] = sim_file
78	os.environ['JUGGLER_REC_FILE'] = rec_file
79	os.environ['JUGGLER_COMPACT_PATH'] = args.compact
80	<pre>os.environ['JUGGLER_N_EVENTS'] = '{}'.format(args.nev)</pre>
81	
82	<pre>juggler_xenv = os.path.join(os.environ.get('JUGGLER_INSTALL_PREFIX', '/local'), 'Juggler.xenv')</pre>
83	
84	<pre>rec_cmd = ['xenv', '-x', juggler_xenv, 'gaudirun.py', os.path.join(sdir, 'options', option_script)]</pre>
85	return_code = subprocess.run(rec_cmd).returncode
86	if return_code is not None and return_code < 0:
87	<pre>print('ERROR running juggler ({})!'.format(opt))</pre>
88	exit(1)
89	<pre>process = subprocess.run(['rootls', '-t', rec_file])</pre>
90	
91	
92	if 'ana' in procs:
93	os.makedirs('results', exist_ok=True)
94	ana_cmd = ['python', analysis_script, rec_file,
95	'mc-collection', 'mcparticles2',
96	'tracking-collection', 'outputTrackParameters',
97	'-o', 'results']
98	return_code = subprocess.run(ana_cmd).returncode
99	if return_code is not None and return_code < 0:
100	<pre>print('ERROR running analysis ({})!'.format(ana))</pre>
101	exit(1)

Tracking Benchmarks

- Reconstruction option file
 - call algorithms developed in Juggler
 - options/truth_seeded_tracking.py
- Digitize: simulation hits -> readout signals. noise, resolution smearing, time jitters could be added here.
- Reconstruct: Readout signals -> hits Only readout unit info is available here (position, signal strength, timing). "calibration" could be implemented here.
 - s trk_b_digi = TrackerDigi("trk_b_digi",
 - 49 inputHitCollection="TrackerBarrelHits",
 - outputHitCollection="TrackerBarrelRawHits",
 - 1 timeResolution=8)

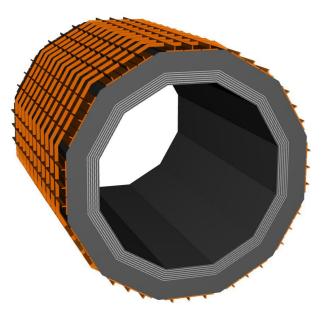
68 trk_b_reco = TrackerReco("trk_b_reco",

- inputHitCollection = trk_b_digi.outputHitCollection,
 - outputHitCollection="TrackerBarrelRecHits")

- Source link: prepare data to feed Acts.
 Link measurements (rec_hits) to Acts surfaces (geometry information)
- Seeding: truth seeding from MC particles Other seeding algorithms from Acts are migrated but not thoroughly tested yet.

	• • •
83	
84	<pre>sourcelinker = TrackerSourcesLinker("trk_srcslnkr",</pre>
85	<pre>inputHitCollections=["VertexBarrelRecHits", "TrackerBarrelRecHits"],</pre>
86	outputSourceLinks="TrackerSourceLinks",
87	outputMeasurements="TrackerMeasurements",
88	OutputLevel=DEBUG)
89	
90	## Track param init
91	<pre>truth_trk_init = TrackParamTruthInit("truth_trk_init",</pre>
92	<pre>inputMCParticles="mcparticles",</pre>
93	<pre>outputInitialTrackParameters="InitTrackParams",</pre>
94	OutputLevel=DEBUG)

□ Tracking: Track finding and fitting with CKF Combinatorial Kalman Filter from Acts.


- 96 # Tracking algorithms
- 97 trk_find_alg = TrackFindingAlgorithm("trk_find_alg",
- 98 inputSourceLinks = sourcelinker.outputSourceLinks,
- 9 inputMeasurements = sourcelinker.outputMeasurements,
- inputInitialTrackParameters= truth_trk_init.outputInitialTrackParameters,
- 01 outputTrajectories="trajectories",
- 102 OutputLevel=DEBUG)

Clustering for Calorimeters

- In the analysis framework, clustering is done by
 - Digitization -> simulation hits to digitized signals
 - Hits reconstruction -> readout signals to energy/timing/position/etc
 - Proto-clustering -> grouping neighboring hits
 - Clustering reconstruction -> reconstruct energy/timing/position from group of hits
- Two clustering algorithms available, more developing
 - Island clustering for 2D hits
 - Topo clustering for 3D hits

Digitization/Reconstruction

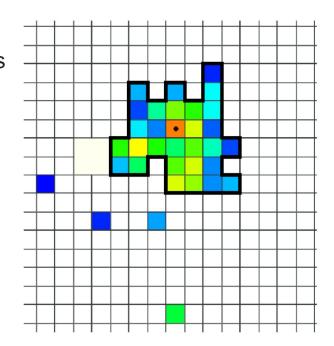
Simulate the electronics response. Currently in the benchmark:

- ADC channels with specific dynamic range
- Pedestal (mean + sigma)
- Timing Jitter

ADC_value = hit_energy / dynamic_range * ADC_capacity + pedestal_mean + pedestal_error (ADC_value clamped by [0, ADC_capacity])

*Timing_value = (hit_time + time_jitter) * time_conversion_factor*

 Hits reconstruction is the reversed process without knowledge of pedestal error and time jitter (assume 0)

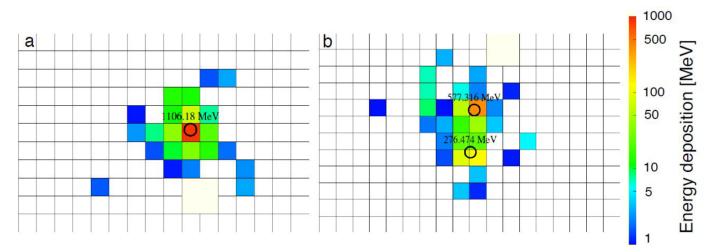


Island Clustering - Grouping

Group all neighbouring hits

Parameterized conditions for finding neighbors Distance in local-XY, local-XZ, local-YZ, local-XY scaled by cell dimensions, global eta-phi, global R-phi

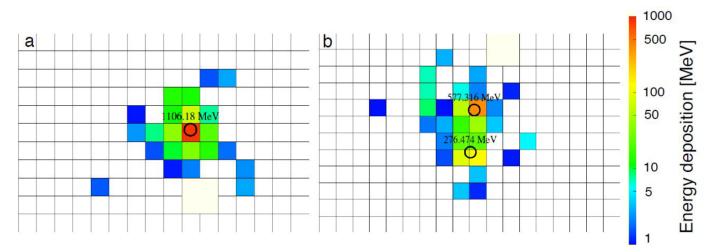
Parameterised minimal energy to be qualified as cluster center, and minimal energy to participate clustering



Island Clustering - Splitting

Cluster splitting is available for Island Clustering

Split based on Local maxima that are qualified as cluster center Hits energy split based on local maxima's energies and distances



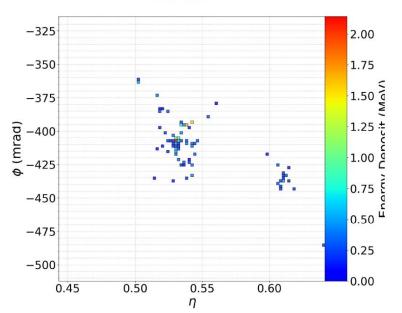
Island Clustering - Splitting

Cluster splitting is available for Island Clustering

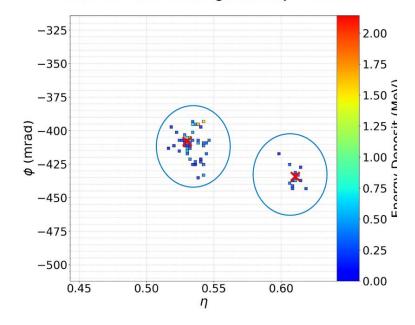
Split based on Local maxima that are qualified as cluster center Hits energy split based on local maxima's energies and distances

Topo Clustering

Similar to Island clustering but works for hits from several layers, currently used for imaging layers


Hits at the same layer, local-XY Hits from different layers, layer id difference and global eta-phi Hits from different sectors, global distance

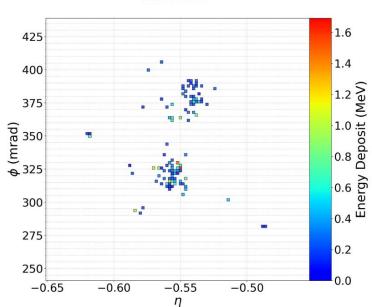
No splitting implemented currently Mostly MIP signals in imaging pixels



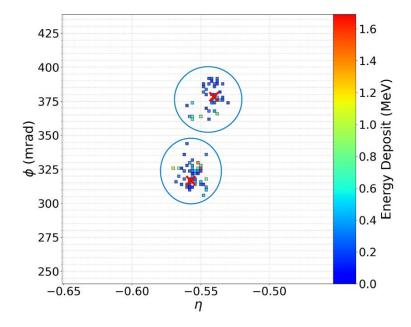
Example – 3D Clustering

All Hits

Clusters and True gamma positions



U.S. DEPARTMENT OF ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



Example – 3D Clustering

All Hits

Clusters and True gamma positions

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Example – Run Benchmarks

Run the example

Install EIC container

mkdir \$HOME/eic && cd \$HOME/eic curl https://eicweb.phy.anl.gov/containers/eic_container/-/raw/master/install.sh | bash

Run EIC container

./eic-shell

Get Reconstruction benchmarks

git clone https://eicweb.phy.anl.gov/EIC/benchmarks/reconstruction_benchmarks.git cd reconstruction_benchmarks

Setup environment variables needed by the run script

source /opt/detector/setup.sh export DETECTOR_PATH=/opt/detector/share/athena export JUGGLER_DETECTOR=athena export JUGGLER_INSTALL_PREFIX=/usr/local

Run benchmark

python benchmarks/tracking/run_tracking_benchmarks.py --etamin=-3 --etamax=3 -n 100

Developing

Develop based on the example (after "run the example", assumed in container) Install Athena detector

```
cd $HOME/eic
git clone https://eicweb.phy.anl.gov/EIC/detectors/athena.git && cd athena
mkdir build && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$ATHENA_PREFIX
make -j install
export DETECTOR_PATH=$ATHENA_PREFIX/share/athena
```

```
cd $HOME/eic
git clone https://eicweb.phy.anl.gov/EIC/detectors/ip6.git && cd ip6
mkdir build && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$ATHENA_PREFIX
make -j install
cp –r ../ip6 $DETECTOR_PATH/
```

Modify/adding detector

See software tutorial <u>https://eic.phy.anl.gov/tutorials/eic_tutorial/part1/simple_detector</u> <u>https://eic.phy.anl.gov/tutorials/eic_tutorial/part2/adding_detectors</u>

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Developing

Develop based on the example (after "run the example")

Install Juggler

cd \$HOME/eic git clone https://eicweb.phy.anl.gov/EIC/juggler.git && cd juggler && git checkout v1.8.0 mkdir build && cd build cmake .. -DCMAKE_INSTALL_PREFIX=\$ATHENA_PREFIX make -j install export JUGGLER_INSTALL_PREFIX=\$ATHENA_PREFIX

Modify/adding algorithms

See software tutorial https://eic.phy.anl.gov/tutorials/eic_tutorial/part3/running_juggler

Run benchmark with modified detector and Juggler

cd \$HOME/eic/reconstruction_benchmarks python benchmarks/tracking/run_tracking_benchmarks.py --etamin=-3 --etamax=3 -n 100

