E12-10-006 Jeopardy Update to PAC50: **SoLID SIDIS Experiments with a Transversely Polarized ³He Target**

Vladimir Khachatryan for the SoLID Collaboration

Physics Department **Duke University**

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

SoLID Collaboration Meeting

Jefferson Lab May 11-12, 2022

Outline

 \succ SoLID SIDIS setup with a transversely polarized ³He target

- The setup and experimental details
- \succ Transverse-momentum-dependent parton distribution functions (TMDs) and target transverse single-spin asymmetries (SSAs)
 - Three TMDs and three SSAs to be measured in E12-10-006
- Several results from the original proposal
 - Collins and Pretzelosity SSAs for $\pi + \pi^{-}$, as well as Sivers SSA for $\pi + \pi^{-}$

> Updates in recent years

- Complementarity to EIC
- **Projections of Transversity TMD and Tensor Charge**
- **Projections of Sivers TMD**
- **Related run group experiments**

Summary

SoLID SIDIS setup with a transversely polarized ³He ("neutron") target

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

E12-10-006: Single Spin Asymmetries on Transversely Polarized ³He (neutron) @ 90 days **Rating A** Spokespersons: J.P. Chen, H. Gao (contact), J.C. Peng, X. Qian

SIDIS: $e + p \rightarrow e' + \pi^{\pm} + X$

- > Target:
 - Length: 40 cm
 - Polarization: $\sim 60\%$
 - Spin flip: ≤ 20 mins
 - Polarimetry: $\sim 3\%$

> GEM: 6 tracking chambers

- > EM Calorimeter: Forward and Large angle
- > SPD: Forward and Large angle
- \succ LGC: 2 m long
- \succ HGC: 1 m long

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

Summary

SoLID (SIDIS ³He)

Experimental details for the E12-10-006 experiment

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

Approved number of days: 90

- \succ 69 days requested for the beam on the trans.-pol. ³He target
- \geq 10 days requested for a dedicated study of the x-z factorization with Hydrogen and Deuterium gas using a reference target cell
- > 3 days requested with a longitudinal target polarization to study the systematics of potential A_{UL} contamination
- \geq 8 days of overhead time requested for regular target annealing
- > Major requirements: Radiation hardness, detector resolution, kaon contamination, DAQ
- Expected DAQ rates: < 100 kHz</p>
- \succ Scattered electrons detected by both Forward-angle and Large-angle detectors; Produced pions detected by Forward-angle detectors only

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

Experimental details for the E12-10-006 experiment

Some details on the SoLID SIDIS setup	Reminder on three TMDs and	Se
with a transpol. ³ He ("n") target	three SSAs under consideration	the

- Momentum coverage: 1.0 7.0 GeV/c; Momentum resolution: $\sim 2\%$
- Polar angular coverage: 8 24 degree; Polar angular resolution: 2 mrad
- \succ Azimuthal angular coverage: 2π ; Azimuthal angular resolution: 6 mrad
- \geq PID (e⁻): detection efficiency \geq 90%; pion contamination < 1%
- \geq PID (π [±]): detection efficiency \geq 90%; kaon contamination < 1%
- Two beam energies: 11 GeV and 8.8 GeV
- > Total luminosity: $3.74 \cdot 10^{36}$ cm⁻² sec⁻¹
- \blacktriangleright Beam polarimetry: < 3%; Beam current: 15 μ A, goes through 5 T magnetic field

> Many other details in SoLID (Solenoidal Large Intensity Device) Updated Preliminary Conceptual Design Report, https://solid.jlab.org/

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

veral results from original proposal

Recent updates

TMDs – confined motion inside the nucleon

Some details on the SoLID SIDIS setup Reminder on three TMDs and three SSAs under consideration with a trans.-pol. ³He ("n") target

Transversity

- $h_{1T}(h_1) = g_1$ (no relativity)
- $h_{1T} \longrightarrow$ tensor charge (lattice QCD calculations)
- Connected to nucleon beta decay and electric dipole moment
- Transversity Tensor charge

Pretzelosity

- Interference between components with quark orbital angular momentum (OAM) difference of 2 units (i.e., s-d, p-p) (model dependence)
- Signature for relativistic effect

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

Summary

Relevant Vectors

- S_{T} : Nucleon Spin
- s_a: Quark Spin
- **k**: Quark Transverse Momentum
- **P:** Virtual photon 3-momentum
 - (defines z-direction)

Sivers

- Nucleon spin quark orbital angular momentum (OAM) correlation
- Zero if no OAM (model dependence)

Separation of the transverse Collins / Sivers / Pretzelosity SSAs

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

SIDIS SSAs depend on 4-D variables (x, Q^2 , z, P_T);

Small asymmetries demand large acceptance + high luminosity allowing for measuring asymmetries in 4-D binning with precision!

$$A_{UT}(\phi_h, \phi_S) = \frac{1}{P_{t,pol}} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

Leading twist formulism (higher-twist terms can be included)

$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Pretzelosity} \sin(3\phi_h - A_{UT}^{Collins}) \propto \langle \sin(\phi_h + \phi_S) \rangle_{UT} \propto h_1 \otimes H_1^{\perp} \checkmark$$
$$A_{UT}^{Pretzelosity} \propto \langle \sin(3\phi_h - \phi_S) \rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$$
$$A_{UT}^{Sivers} \propto \langle \sin(\phi_h - \phi_S) \rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \checkmark$$

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

Summary

 $\phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$

Collins fragmentation function from e⁺e⁻ collisions

Unpolarized fragmentation function

Transverse SSAs in the SIDIS cross section

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target Reminder on three TMDs and three SSAs under consideration

> Three transverse SSAs standing in the SIDIS differential cross section

$$\frac{d\sigma_{SIDIS}}{dx \, dy \, dz \, dP_T^2 \, d\phi_h d\phi_S} = \frac{\alpha^2}{x \, y \, Q^2} \left(1 - y + \frac{1}{2} y\right)^2$$
Shown at leading order
in 1/Q expansion
$$\times \left\{1 + \dots + S_T \sin(3\phi_h - \phi_S) + S_T \sin(3\phi_h - \phi_S)\right\}$$
Solution
$$S_T - \text{transverse component}$$
of target-spin direction
$$+ S_T \sin(\phi_h - \phi_S)$$

Totally 18 terms in leading and sub-leading order in 1/Q

S. Bastami, et al., JHEP 06, 007 (2019)

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

 $F^2
ight) F_{UU}(x, y, P_T^2) \times$

- $(\phi_h + \phi_S) p_1 A_{UT}^{Collins}$
- $(\phi_S) p_1 A_{UT}^{Pretzelosity}$
- $(S_S) A_{UT}^{Sivers} + \dots \}$

Nuclear physics questions to be addressed by SoLID SIDIS

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

Several results from the original proposal

Nuclear physics critical problems to be addressed by the SoLID SIDIS program with both "neutron" and "proton" targets

- How to quantify the quark transverse motion inside the nucleon and observe spin-orbit correlations?
 - Sivers TMD
- \succ Is the confined motion in the transverse plane dependent on Bjorken x?
 - Sivers TMD
- > Is it possible to provide quantitative information on the quark OAM contribution to the nucleon spin?
 - Pretzelocity TMD and Sivers TMD
- \succ Are there clear signatures for relativity inside the nucleon ?
 - Transversity TMD and Pretzelocity TMD
- \succ Is it possible to provide a high precision test for lattice QCD predictions?
 - Tensor charge from Transversity TMD

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Recent updates

Collins and Pretzelosity SSAs for $\pi + 1\pi^{-1}$ (original projections)

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

 \triangleright SoLID SIDIS projections in a typical z and Q² bin for the π + Collins/Pretzelosity SSA measurements as a function of x, with different ranges of the hadron P_T labeled

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

10

Sivers SSA for π^+/π^- (original projections)

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

SoLID SIDIS projections in a typical z and Q² bin for the π +/ π ⁻ Sivers SSA measurements as a function of x, with different ranges of the hadron P_{T} labeled

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

Transverse SSA projections: Complementarity to EIC

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

> SoLID SIDIS projections of A_{UT} in various 4-D bins at 11/8.8 GeV beam energies

- > Projections at EIC kinematics for the same observable at 29 GeV center-of-mass energy
- \succ SSA scale and uncertainties shown on the right-side axis of the figures
- \succ SoLID and EIC projections synergistic towards each other, by covering different x and Q² ranges

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

Summary

12

Transversity TMD projections

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

> Top figures: impact on the u and d quarks' Transversity TMD extractions by the SoLID SIDIS program

- ➢ World: SIDIS data from COMPASS / HERMES, e⁺e⁻ annihilation data from BELLE / BABAR / BESIII
- Bottom figures: ratios between the World and SoLID projected uncertainties shown in the top figures \triangleright
- > Monte Carlo method applied; the results obtained at $Q^2 = 2.4 \text{ GeV}^2$

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

Transversity TMD projections

Tensor Charge projections

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

Tensor charge g_T :

$$g_T^q = \int_0^1 \left[h_1^q(x) - h_1^{\overline{q}}(x)\right] dx$$

World data

SoLID projections

from ³He target at 11 / 8.8 GeV beams

Statistical and systematic uncertainties included

g _τ Flavor separation	World data	SoLID baseline	SoLID enhanced baseline
u/d value	0.548 / -0.382	0.547 / -0.376	0.547 / -0.376
u/d error	0.112 / 0.177	0.034 / 0.023	0.027 / 0.017

Sivers TMD projections

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

- > Top figures: impact on the *u* and *d* quarks' Sivers TMD extractions by the SoLID SIDIS program
- World: SIDIS data from COMPASS / HERMES, e⁺e⁻ annihilation data from BELLE / BABAR / BESIII
- Bottom figures: ratios between the World and SoLID projected uncertainties shown in the top figures \triangleright
- > Monte Carlo method applied; the results obtained at $Q^2 = 2.4 \text{ GeV}^2$

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

E12-10-006 -- related run group experiments

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

Approved five Run Group Experiments

- 1. SIDIS Dihadron with Transversely Polarized ³He target
 - A study of transversity parton distribution using measurements of semi-inclusive electroproduction of two charged pions in the DIS region to be carried out
 - Will provide input data to extract the u and d transversity distributions in a model-independent way
 - Will be run in parallel with the experiment E12-10-006

2. SIDIS in Kaon Production with Transversely Polarized NH₃ and ³He targets

- Measurements of K^{\pm} production in SIDIS using both the transversely polarized ³He and NH₃ targets to be performed, to extract the K[±] Collins, Sivers and other TMD asymmetries
- Will provide input data to determine the u, d and sea quarks' TMDs
- Will be run in parallel with the experiments E12-10-006 and E12-11-108
- 3. Deep Exclusive Meson Production: Measurement of Deep Exclusive π^2 Production using a Transversely Polarized ³He Target and the SoLID Spectrometer
 - Precision studies of GPDs with a deep exclusive π^{-} electroproduction
 - Measuring two specific transverse target single spin asymmetries related to four lowest-order GPDs
 - Will be run in parallel with the experiment E12-10-006

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Several results from the original proposal

Recent updates

E12-10-006 -- related run group experiments

Some details on the SoLID SIDIS setup with a trans.-pol. ³He ("n") target

Reminder on three TMDs and three SSAs under consideration

Several results from the original proposal

- 4. A_v: Target Single Spin Asymmetry Measurements in the Inclusive Deep-Inelastic Reaction on Transversely Polarized Neutron (³He) and Proton (NH₃) Targets using the SoLID Spectrometer
 - Single spin asymmetry, A_{y} , to be obtained by scattering unpolarized electrons from a transversely polarized targets in the DIS region
 - Extract the two-photon exchange contribution in the absence of the typically dominant Born scattering contribution by measuring the azimuthal dependence of this asymmetry
 - Will be run in parallel with the experiments E12-10-006 and E12-11-108
- 5. g_2^n and d_2^n : Measurement of Inclusive g_2^n and d_2^n with SoLID on a Polarized ³He Target
 - Precision measurements of the neutron structure function, $g_2(x, Q^2)$
 - Also, measure its moment, $d_2(Q^2)$, connected to the quark-gluon correlations within the nucleon
 - $d_2(Q^2)$, one of the cleanest observables to test the theoretical calculations from lattice QCD and various nucleon structure models
 - Will be run in parallel with the experiments E12-10-006 and E12-11-007

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Recent updates

Summary

> SoLID SIDIS program will be *unique* (valence quark region with high precision)

- Exploring the 3-D tomography of the nucleon in momentum space
- Complementing the research of other key facilities, e.g., COMPASS, COMPASS-II, EIC
- \succ Impactful results to be obtained in the first three years of SoLID operations with ³He and NH₃ trans.-pol. targets
 - Measuring Transversity, Pretzelocity, and Sivers TMDs
 - Confronting the Lattice QCD predictions (e.g., tensor charge)
- > No less impactful results to be obtained with the SoLID SIDIS run group experiments based on using trans.-pol. and long.-pol ³He targets, as well as NH₃ trans.-pol. target
 - Enhancing our knowledge on light and sea quark TMD distributions inside the nucleon, quark-gluon interactions, GPDs, as well as having significant impact for discrimination among various parton model predictions for nucleon intermediate states

Thank You !

Acknowledgement: Haiyan Gao, Zhiwen Zhao, Jian-Ping Chen, Tianbo Liu, Xiaqing Li, Ye Tian, and the entire SoLID collaboration.

Systematic uncertainty sources

- \succ Systematic uncertainty sources and how we address them:
 - *Raw asymmetry*: expect to control the syst. uncertainties corresponding to detector efficiencies (time-dependent part) by monitoring the single e^{-} , π^{+} , π^{-} rates
 - *Target polarization*: knowledge of the target pol. at 3% level \rightarrow translates to a 3% rel. syst. uncertainty of the SSA data
 - Random coincidence: obtained from the signal to noise ratio and background within 6 nsec
 - *Diffractive meson*: pion contribution from diffractive production decay estimated based on HERMES tuned Pythia at SoLID SIDIS kinematics
 - *Radiative correction*: the effect is simulated with HAPRAD, at the QED one-loop level
 - Detector resolution: estimated based on the track fitting studies
 - *Nuclear effects*: estimated based on theoretical calculations of the neutron SSA extraction at SoLID SIDIS kinematics

 \blacktriangleright Average statistical uncertainties on the separated SSAs: ~ 3.7 · 10⁻³ (absolute) for 1400 bins

Systematic uncertainty budget

- \succ The budget for the absolute and relative systematic uncertainties of the π +/ π ⁻ Collins and Sivers SSAs
- The uncertainty sources described in the previous slide

Source (Type): ³ He (E12-10-006)	Collins π ⁺	Collins π⁻	Sivers π ⁺	Sivers π ⁻
Raw asymmetry (Abs.) Detector resolution (Abs.)	1.4 ×10 ⁻⁴ < 10 ⁻⁴			
Target polarization (Rel.)	3% + 0.5%	3% + 0.5%	3% + 0.5%	3% + 0.5%
Random coincidence (Rel.)	0.2%	0.2%	0.2%	0.2%
Nuclear effects (Rel.)	4% + 1.2%	4% + 1.2%	5% + 1.2%	5% + 1.2%
Diffractive meson (Rel.)	3%	2%	3%	2%
Radiative corrections (Rel.)	2%	2%	3%	3%
Total (Abs.) Total (Rel.)	1.4 ×10 ⁻⁴ 6.3%	1.4 ×10 ⁻⁴ 5.9%	1.4 ×10 ⁻⁴ 7.3%	1.4 ×10 ⁻⁴ 7.0%

SoLID Sub-systems

- > Coincidence detection of electrons and charged pions: good PID for electrons (LGC+EC); moderate PID for pions (HGC)
- > DAQ rate: up to 100 KHz

Vladimir Khachatryan: SoLID Collaboration Meeting, May 11-12 (2022), JLab

Combined light gas Cherenkov and Calorimeter detector performance

