

MRPC R&D towards high rate, high time precision and working more environment friendly

Yi Wang, Xiaolong Chen

Email:xiaolongc@tsinghua.edu.cn

Tsinghua University

12 May 2022

Outline

- JLab and Multigap Resistive Plate Chamber (MRPC)
- MRPC at the R&D frontier: rate and time resolution
 - Application: prototype with time precision <20 ps
- The gas related challenges and solutions
 - Application: sealed MRPC for CEE-eTOF
- Preparation for beam test
- Summary

SoLID experiment

An experiment of JLab
SoLID: high rate+big azimuth
TOF locate at the end of beamline
π/K (1~7 GeV/c)

Multigap Resistive Plate Chamber

First proposed by E. C. Zeballos

MRPC has been broadly adopted to construct the Time of Flight (TOF) systems in HEP experiments.

The multigap structure brings:

- Narrow gap thus high time precision
- Necessary gap thickness for good efficiency

					In construction	Proposed
	ALICE	STAR	FOPI	BESIII	СВМ	SoLID
Active area per detector (cm)	120 x 13	22 x 8.4	90 x 4.6	0.5x(9.2+14.8) x32.8	33 x 27.6	
Total active area (m ²)	141	50	5	1.33	120	10
Pad size (cm)	3.7 x 2.5	6.3 x 3.1	90 x 0.3	(9.1~14.1) x 2.4	27 x 1.0	(16~28) x 2.5
Gap×thickness(mm)	10 x 0.25	6 x 0.22	6 x 0.3	12 x 0.22	10 x 0.25	10 x 0.25
Gas mixtures $(C_2H_2F_4/C_4H_{10}/SF_6)$	90/5/5	95/5/0	85/5/10	90/5/5	90/5/5	90/5/5
Operating field (kV/cm)	96	107	110	109	110	106
Efficiency	99.9%	95-97%	97±3%	99%	97%	98%
Time resolution(ps)	40	60	73±5	60	60	20 ps
Max rate (Hz/cm ²)	50	10	50	50	30k	10k

The MRPC applications are in the trend of the higher **counting rate** and **time precision.**

Expanding the MRPC rate capability

One must control the voltage drop (efficiency loss) when incident flux goes up.

 $V_{gap} = V_{ap} - \bar{V}_{drop}$

 $\bar{V}_{drop} = \bar{I}R = \bar{q}\Phi\rho d$

Decrease the resistivity of the electrodes

With the low-resistive glass developed in Tsinghua, resistivity has decreased by 2 orders of magnitude. (common float glass: $10^{12} \Omega$ cm, low-resistive: $10^{10} \Omega$ cm)

MRPC2 with low-resistive glass will be applied in CBM-TOF wall, and has been operating at FAIR-Phase 0 programs like STAR-eTOF and mCBM

Rate capability verified through beam test: 93%, 80ps@70kHz/cm²

12 May 2022

Towards a time precision < 20 ps

Time over Threshold (ToT) method – Leading and trailing time

□ G4 simulation indicates proper ways to design the gap thickness and arrange the stacks

Besides the 'intrinsic' time resolution of the detector, it is also crucial to develop an **advanced readout technique.**

Waveform provides detailed information of avalanche that allows more calibration methods.

An MLP neuron network for position calibration

An LSTM model for signal leading edge recognition and time calibration

12 May 2022

The high-rate high-resolution prototype

□ Two prototypes has been assembled and tested.

Parameter	Value		
Gap thickness (mm)	0.128		
N of gaps	4 x 8		
glass	Low-resistive		
Glass thickness(mm)	0.4		
Strip interval (cm)	0.5 width + 0.2 gap		

■ The high rate test is carried out by discriminating cosmic event in Xray irradiation.

Gas-related challenges of MRPC

■ Regulations against greenhouse gases causes uncertainty:

availability, cost, eco-impact, ...

■ Application with large area: gas flow, cost, leakage, ...

STAR-TOF (left) and CBM-TOF (right) detectors in gas boxes forming a module

Gas pollution effect in high rate conditions

Narrow gap of MRPC and large gas volume --ionization products exchanged slowly by **diffusion**

... observed in HEP experiments and lab tests.

Pollution caused noise and current rise

Motivation: A wise design of the gas volume will promote the gas exchange and decrease the gas consume.

12 May 2022

Sealed MRPC

3D printed sealing frame with Good strength, insulation and radiation persistency

- With the lateral side mostly enclosed, the counter itself becomes a gas box. The sealed design brings the features of:
 - 1. Gas saving: 20 sccm/m² gas flow with common practice

With cosmic ray test of a counter, 1 mL/min flow is examined with stable operation for the tested 24 days!

Sealed MRPC

2. Promoted gas exchange

Decrease the wait time of gas purging:

• Reach the working HV in 2h since flowing the gas

Excellent current behavior under high rate irradiation:

- Stable current with constant rate condition.
- Fast decay of dark current since when X-ray is off

Sealed MRPC for CEE-eTOF

CSR External-target Experiment at IMP, Lanzhou. In construction for full operation by 2024.

eTOF subsystem consists of 24 sealed MRPCs

N of strips	32	16		
N of gaps	2× 5			
Gap thickness(mm)	0.25			
N of counters	18 6			
Active area(mm ²)	480×560	480×280		
Strip interval(cm)	1.5+0.2	1.5+0.2		
Strip length(cm)	48			

Cosmic test stand has been set up for the prototypes.

At the working point of 6900V, with a proper 250 mV threshold the **efficiency can reach >97%**

After correction the time resolution reaches 75/v2=**53 ps** for single counter

Reconstructed position obtained.

Status of CEE-eTOF

Simulation and analysis of the subsystem were carried out with CeeRoot – a FairRoot based framework.

Gas and HV power systems

Installation design and modular stability test 20 mL/min flow for 1 m² MRPC realized in practice.

12 May 2022

Preparation for beam test

Beam test preparation

- 1 MRPC flushed with a gas flow no less than 30 sccm and then can applied high voltage
- 2 HV scan for detector proper working point , by the experience, a lab gas mixture composed of 90% C2H2F4(Freon), 5% i-C4H10 (isobutene) and 5% SF6, time precision better than 80ps@±5500V
- 3 Rate scan
- 4 Aging study
- 5 Gas flow scan
- 6 we can also have detail discuss after the meeting
- 7 More things can see reference [1]or[2]

Sealed MRPC over view

[1] Yu Y, D Han, Wang Y, et al. R&D of a real-size mosaic MRPC within the framework of the CMS muon upgrade[J]. Jo urnal of Instrumentation, 2019, 14(10):C10042-C10042.

[2] Lyu P, Han D, Wang Y, et al. Performance study of a real-size mosaic high-rate MRPC[J]. Journal of Instrumentatio n, 2018, 13(06):P06016-P06016.

Summary

- Future HEP experiments calls for MRPCs with high rate capability and excellent time resolution.
- Low-resistive electrodes help expand the MRPC rate capability.
- Narrow gap width and advanced readout chain help improve the timing performance.
- Prototype has been examined its 96% efficiency and 20 ps resolution at 20 kHz/cm² rate condition.
- MRPC faces gas related challenges which motivates an enhanced gas exchange.
- Sealed MRPC with low gas volume has been validated and will be applied to construct CEE eTOF.
- Some suggestions were gave for the beam test

Thank you !