
SoLID Collaboration Meeting

Magnet Test & Detector Support

Whit Seay May 11, 2022

Presentation Outline

Latest updates – Cold Test

- 1) Cold test update
- 2) Detector support plan
- 3) Misc.

Merged CLEO Refurbishment and Cold Testing (Phase 1)*

1. New Instrumentation and Control System – FY18

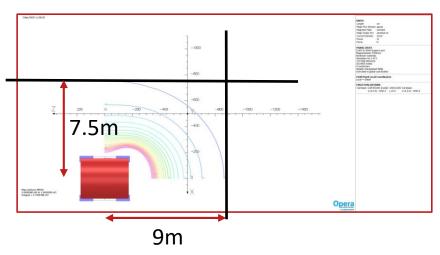
- Design the system <u>completed</u>
- Identify hardware and software requirements <u>completed</u>
- Procurement <u>completed</u>
- Assemble and test the new I&C –assembly 95% complete

2. New Cryo Control Reservoir – FY 19-20

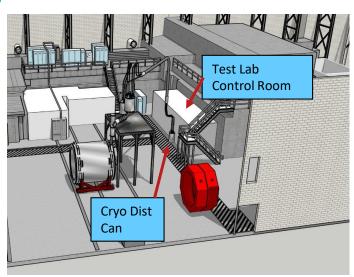
- Design to interface w/ CLEO and JLAB ESR system completed
- Procurement: completed
- Acceptance testing upon arrival-leak & pressure <u>completed</u>

3. Static Testing of the CLEO Magnet – FY 18-20

- Check out existing instrumentation in the cryostat <u>completed</u>
- HIPOT test the coil <u>completed</u>
- Tested 50% of the radial loadcells completed Nov 2020


Merged CLEO Refurbishment and Cold Testing (Phase 1)*

4. Test Lab Layout – FY20

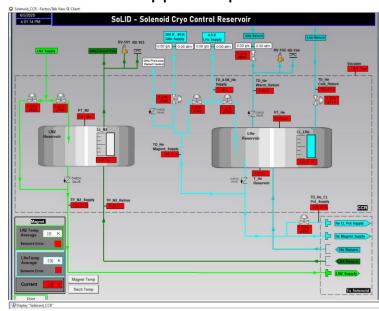

- Run a careful magnetic analysis of coil in test lab* completed
- Identify 50 gauss and 5 gauss boundaries* <u>completed</u>
- Identify existing transfer lines that can be used in test— <u>completed</u>
- Lock down final magnet position for test <u>completed</u>

5. Support Structures for Cold Test – FY 20-21

- Design platform to support CCR/personnel access in fabrication
- Design cryo line supports in progress

Magnet – Cold Test Update

- Majority of our effort remains focused on the cold test
- Merged the CLEO refurbishment/static test and cold testing into Phase 1
- Detector Support Group (DSG) is nearing completion of SoLID control system
- Hall C has provided engineering and design support for the CCR and interface with the current lead stack (turret). Performed an analysis of the coils in the test lab to identify magnetic field boundaries.
- Personnel access platform installed working on support for CCR, heat exchanger, turret


Magnet - Cold Test Update - Controls

- Detector Support Group (DSG) are assembling the control racks
- PLC code & HMI screen development are <u>complete</u>
- Modifying a Hall C superconducting magnet controls program for use with SoLID
- Interface with cryo group and MCC ongoing (CSS)
- Motor controller boards for JT valve control delivered
- Checking/reviewing the PLC code 50+ pages to date

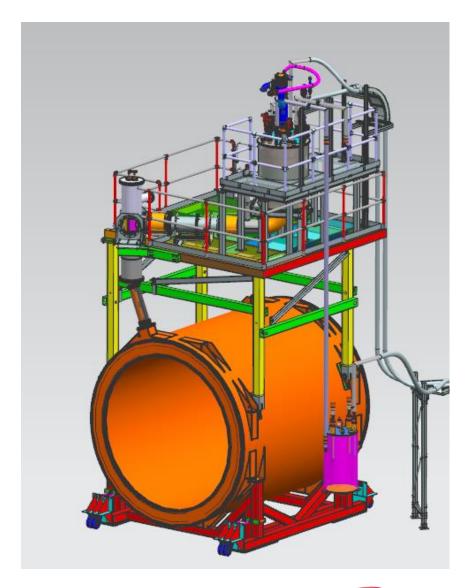
Neck temperatures, radial and axial supports and radial and axial support expert CSS-

BOY screens created

- Latest version of CCR control HMI updated
- Electrical drawings are being reviewed
- Cables for the control system complete
- Assembly of control system 95% complete
- Preparing for hot check out of system

Cold Test Update – CCR – Testing Complete

- CCR delivered early March 2021
- Final acceptance tests completed end of March 2021
- Ready for instrumentation and JT valve installation

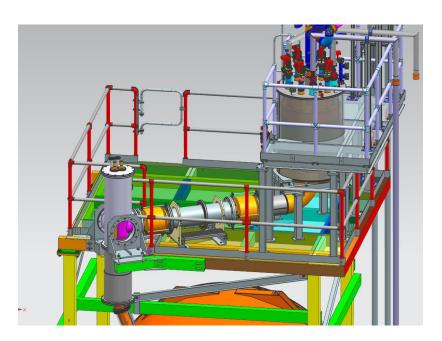


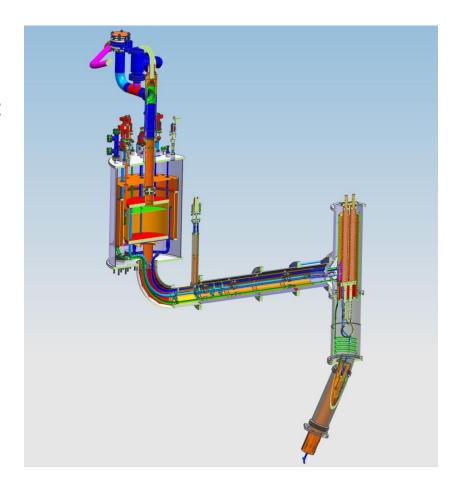
Magnet – Access Platform Update

- Personnel platform completed installed
- Design for CCR support and service turret support nearing completion or in procurement.
- Connection between CCR and service turret along with its support stand has been designed. Procurement in progress.

Cold Test Update – Service Turret Removal - Complete

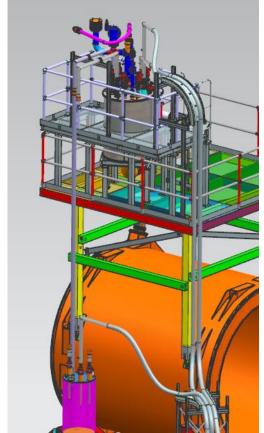
- Service turret housing SC leads removed from 700L CLEO dewar. Cleaning and refurbishing.
- Service neck rebuild in progress
- Superinsulation in procurement





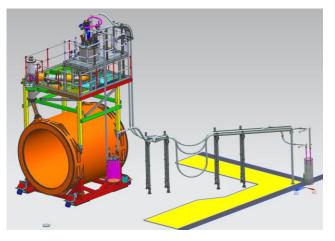
Cold Test Update - CCR and Current Lead Turret Connection

- Connection between CCR and current lead stack turret finalized.
- Bellows estimated delivery end of May 2022
- Vacuum jacket and radiation shielding drawings completed and in procurement.
- Turret Support finalized and in procurement



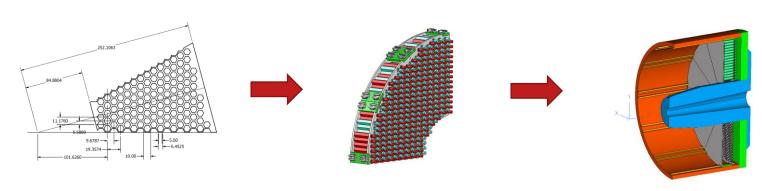
Cold Test Update – Cryo Supply

- The cryo group is supporting cryo needs for cold test
- Transfer line layout and support nearing design completion



Cold Test Update – Cold Test Milestones

Phase 1 Solenoid Rehab Milestones


- Solenoid rehab will confirm condition of the magnet
- Provide risk reduction to the project
- Improve magnet cost estimate
- Estimated completion Oct 2022

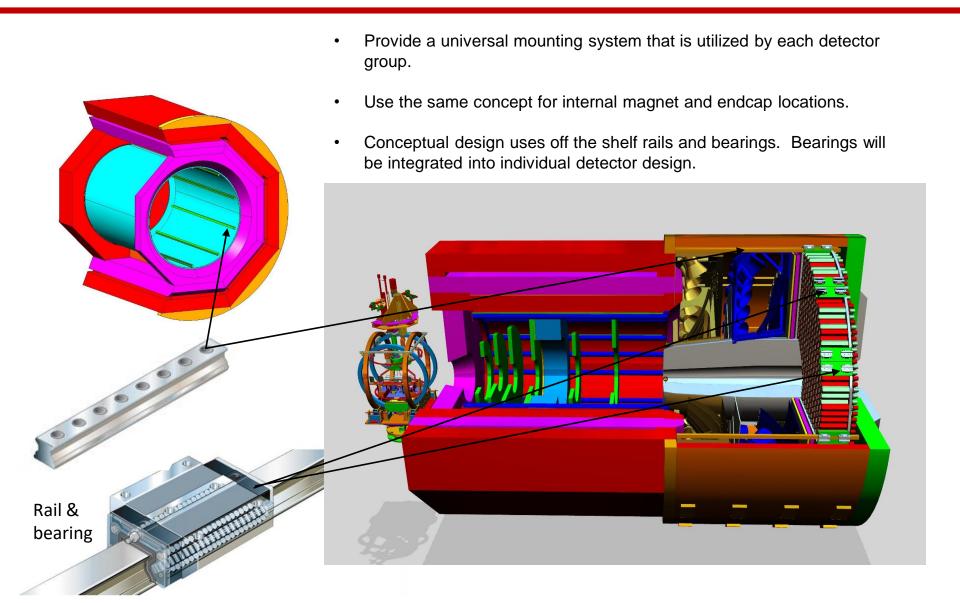
Infrastructure - Detector Support Plan

Looking forward....preparing for CD0 → CD1 design work on detector supports

- Provide updated detector design details to engineering/design CAD models, space requirements and weight
- Provide preliminary assembly plan include any assembly fixture design or concepts
- Develop initial detector delivery → assembly → testing → installation plan for each detector group
- All high level discussions at this point

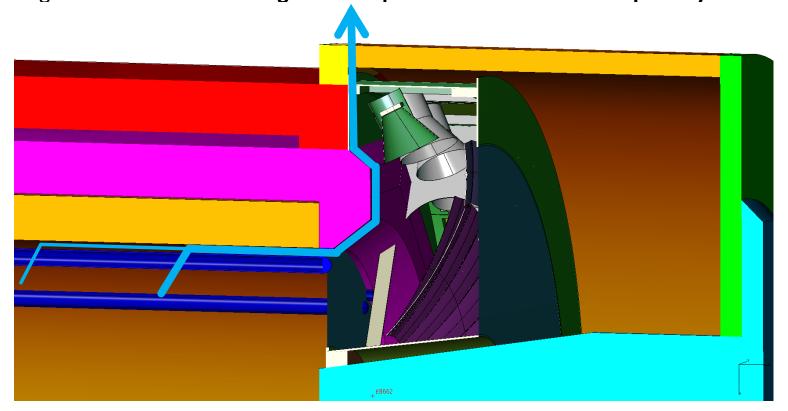
This will define the requirements of each detector and lead us into installation fixture design. Ideally each detector group would have the same or very similar installation fixture

Infrastructure – Detector Support Plan

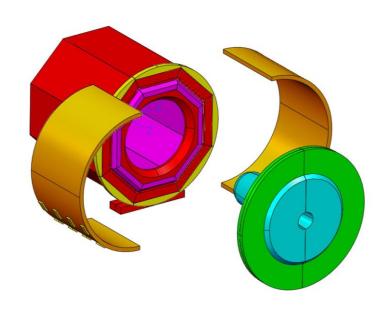

Requesting updated detector design information from detector groups

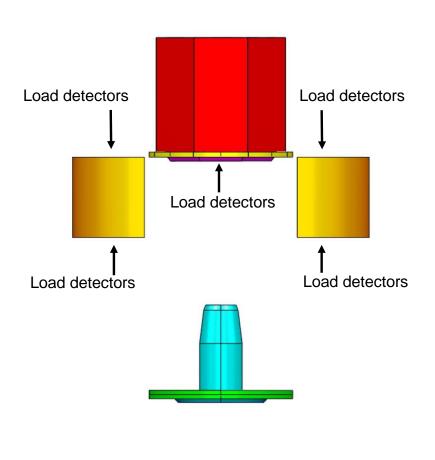
- · Number of sectors of your detector
- Final installed configuration one piece or two? Remember detectors support by rails in endcap must be assembled into two halves split vertically. LGC is the exception since it doesn't mount to rails.
- Weight of each sector
- Robust lift points used for lifting, rotating into proper orientation and installation

This allows us to lock in quantity and size of the rails – likely governed by heaviest detector

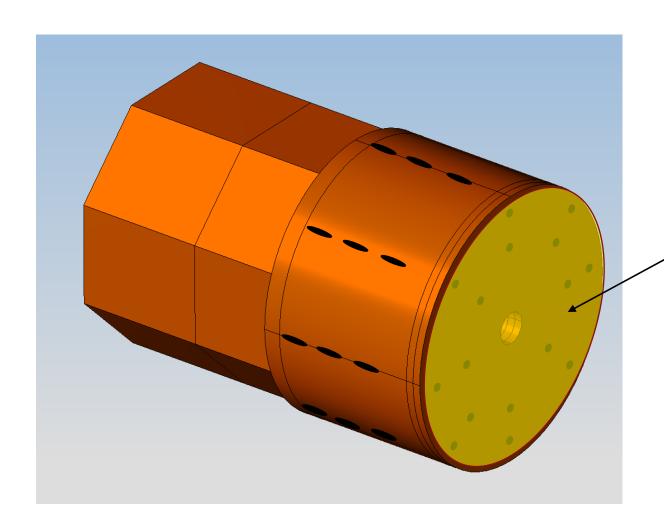


Infrastructure – Detector Support Structure


Infrastructure – Magnet Bore Cable Routing – LGC


Below demonstrates the possibility of running cables from inside the bore downstream and out radially along the perimeter of the coil collar, layers of return iron and out through openings in the front of the endcap. This could create channels for bundles to weave their way out. This impacts the LGC space and the design of their tank. **Defining these requirements needs to be a priority.**

Magnet – Endcap Motion Concept


- Decouples the nose and backplates from the half cylinders
- Provides additional access points for installing and servicing detectors
- Simplifies motion system and tracks mounted to the floor

Magnet – Access Holes for Cabling

With new endcap motion concept the rear backplates are no longer available to route cables out of endcap

Magnet – Detector Cables – Update Total Area Needed

	Total area(cm2)	Location to go out	comment
FAEC (PVDIS)	1800	Endcap Back plate	1800 1.1cmD fiber bundle, 1800 0.3cmD fiber bundle
LAEC (SIDIS)	500	near downstream collar?	500 1.1cmD fiber bundle, 500 0.3cmD fiber bundle
FASPD	tiny	endcap side	240 1mmD fiber
LASPD	40	near downstream collar or solenoid front?	60 HV, 60 BNC
LGC	170	Near downstream collar or endcap side?	270 5mmD HV, 270 3mmD BNC
HGC	300	Endcap side	480 HV, 480 BNC 2 gas line at top, 2 gas line at bottom
GEM (PVDIS)	650	Near downstream collar or endcap side?	1,2,3 GEM planes, total cable 540 HDMI, 90 SHV, 180 Gas, 6mmD each, use 10mmD for safety, 3.1416*(10/2)^2/100*(540+90+180)=636cm2
	730	endcap side	4,5 GEM planes, total cable 720 HDMI, 60 SHV 120 Gas, 6mmD each, use 10mmD for safety, 3.1416*(10/2)^2/100*(720+60+120)=707cm2
GEM (SIDIS)	1380	Near downstream collar or solenoid front?	Assume same like PVDIS
MRPC	1650	endcap side	3300 channels, assume 0.5cm2 each

Questions/Comments?

wseay@jlab.org

