Beam test and Simulation

Ye Tian Syracuse University

Beam test simulation configuration

Simulated backgrounds

Comparison between simulation and data

Simulation for Beam Test at Jlab

- □ Benchmarking simulation of rate and background
- Study ECal and LASPD performance under high rate, high radiation, high background condition
- □ Study ECal and LASPD PID

GEMs SC A

Hall C Downstream Beam Line are included

ECal Simulation for Beam Test at 82 deg

≻ 82 deg —luminosity~5e³⁷

- dominant by pi0
- charged pion energy is not large enough to see the MIP at shower

The shower deposit energy tail follows an exponential function for both the simulation and the data, providing an alternative method for "calibration" in the absence of MIP peaks. Ye Tian

ECal Simulation for Beam Test at 7 deg

- ➤ 7 deg—luminosity~e³⁷
- 60 MeV Moller electron from the target
- γ from beam line (high energy photons covered the MIP at shower)

ECal Simulation for Beam Test at Jlab

➤ 7 deg—luminosity~2e³⁶

- 60 MeV Moller electron from the target
- γ from beam line (high energy photons covered the MIP at shower)

Preshower

ECal Simulation for Beam Test at 7 deg

- 7 deg—luminosity~2e³⁶
- 60 MeV Moller electron from the target
- photons from beam line (high energy photons covered the MIP at shower)

ECal Rate Comparison at 7 deg

TS#4 threshold Edep=200 MeV calibrated from the run 4121 (3He target):

ECal Rate Comparison at 7 deg

TS#4 threshold Edep=133 MeV calibrated from the run 4206 (dummy target):

ECal Rate Comparison at 18 deg

18 deg—high rate test luminosity~ 2e³⁷-4.5e³⁸

- few MeV Moller electron
- It is easy to see the MIP at shower

Rate (kHz)/Occ per ch.	Num. of ch.	SIDIS ³ He	J/ψ	PVDIS	comment
LGC	270	400/0.02	1000/0.05	2000/0.1	Np.e. ≥ 1
HGC	480	4000/0.2			Np.e. ≥ 1
SPD_FA	240	3200/0.16	8600/0.43		cut below MIP
SPD_LA	60 🦯	4500/0.225	9200/0.46		cut below MIP
EC_preshower_FA	~1300/~1800	3300/0.17	7650/0.38	9000/0.43	cut below MIP
EC_shower_FA	~1300/~1800	920/0.05	2344/0.12	900/0.05	cut below MIP
EC_preshower_LA	~500	4533/0.23	8119/0.41		cut below MIP
EC_shower_LA	~500	482/0.03	1894/0.1		cut below MIP
GEM	~161e3/~188e3	4e3/0.3	5e3/0.4	5e3/0.4	digitized

(Table 25 from SoLID PreCDR) Detector maximum rate and occupancy per channel

• LASPD rate= 10200 kHz: based on 5uA run 4680 wavefrom from https://userweb.jlab.org/~tianye/SoLID/FCAL_beamtest_simulation_2022/run4680_LASPD_rate_pulse.pdf

• Shower half MIP trigger rate = 10240 kHz based on 68 uA run4813 trigger rate

Simulation: γ , π^{\pm} , e⁻ Ratio as a Function of DepE

Simulation: γ , π^{\pm} , e⁻ Ratio as a Function of DepE

PreShower_I

Run 4577 40uA on LD2 Compared with 5GeV simulated e 4.9 GeV< E< 5.3GeV ይሪ 15000<Shower I simulated 5GeV e*2 PreSh I PreShower works very well for the high energy region ╔╓╔┙ 15000<Shower_I+SC_D>0.5 MIP ուղ simulated 5GeV e (normalized)

SoLID collaboration meeting

Ye Tian

PreSh_I

Run 4344 10uA on LH2

- LASPD_t derivative
- LASPD_t+LASPD_b
- ShowerSum
- Run 4680
- **5uA** on LD2
- TS4
- 2200<Shower_t<2800
- 800<PreSh_t<1200

LASPD Photon Rejection Study

N_(LASPD=0)/N=73.3%

- Run 4680
- 5uA on LD2

PreCDR LASPD photon rejection 10:1 $(\pi^0 \gamma$ +low energy e⁻ + γ bkg)

LASPD Photon Rejection Study

N_(LASPD=0)/N=73.3%

- Run 4680
- 5uA on LD2

PreCDR LASPD photon rejection 10:1 $(\pi^0 \gamma$ +low energy e⁻ + γ bkg)

Simulation----Photon Rejection

PreSh_l {rate*(Shower_l>90.9 && Shower_l<182)}

Summary

- 5uA LASPD rate is comparable with the SoLID LASPD rate. The 5uA waveform looks reasonable, and the photon rejection is ~54%. It could be improved by narrowing the LASPD timing peaks.
- $> \sim 18 \% \gamma$ converted before they hit the LASPD.
- > Mostly we see γ in the TS4 data (besides the threshold 15 mV runs).
- A well defined LASPD analysis task: look at low current (including beam trip) LASPD data with high energy shower cuts (Shower_ADC>5000) to study LASPD performance. (C-hole runs)

Backup

