

Istituto Nazionale di Fisica Nucleare



HAS QCD



## Looking for strong parity violation in the proton structure

Matteo Cerutti

in collaboration with A. Bacchetta, L. Manna,

M. Radici and X. Zheng

SoLID Collaboration meeting — 05/09/2023

Investigation of the "Strong CP problem"



Investigation of the "Strong CP problem"



Matter-Antimatter imbalance



#### EW sector

#### CP violation is included

#### EW sector

#### CP violation is included

Weak CP



#### EW sector

#### CP violation is included

Weak CP

too small...



#### EW sector

#### CP violation is included

Weak CP

too small...



QCD sector

#### EW sector

#### CP violation is included

Weak CP

too small...



#### QCD sector

Strong CP



#### EW sector

#### CP violation is included

Wealk CP

too small...



**QCD** sector

 $\mathcal{L}_{\rm QCD}' = \mathcal{L}_{\rm QCD} + \mathcal{L}^{\rm CP}$ 

Strong CP



#### EW sector

#### CP violation is included

Weak CP

too small...



#### QCD sector

Strong CP

 $\mathcal{L}_{\rm QCD}' = \mathcal{L}_{\rm QCD} + \mathcal{L}^{\rm CP}$ 

 $\theta$ -term SMEFT operators



#### EW sector

#### CP violation is included

Weak CP

too small...



#### QCD sector

Strong CP

 $\mathcal{L}_{\rm QCD}' = \mathcal{L}_{\rm QCD} + \mathcal{L}^{\rm CP}$ 

 $\theta$ -term SMEFT operators

Nucleon electric dipole moment

#### EW sector

#### CP violation is included

Weak CP

too small...



#### QCD sector

Strong CP

 $\mathcal{L}_{\rm QCD}' = \mathcal{L}_{\rm QCD} + \mathcal{L}^{\rm CP}$ 

 $\theta$ -term SMEFT operators



Nucleon electric dipole moment

never measured...

#### P-symmetry

P-symmetry



QCD Lagrangian is invariant under parity transformations

P-symmetry

QCD sector

QCD Lagrangian is invariant under parity transformations

Are there any effects of QCD P-violation on the internal structure of nucleons?

P-symmetry

QCD sector

QCD Lagrangian is invariant under parity transformations

Are there any effects of QCD P-violation on the internal structure of nucleons?

Terms from EW sector

P-symmetry

QCD sector

QCD Lagrangian is invariant under parity transformations

Are there any effects of QCD P-violation on the internal structure of nucleons?

Terms from EW sector

erms from Evv secto

Wealk P-violation



P-symmetry

QCD sector

QCD Lagrangian is invariant under parity transformations

Are there any effects of QCD P-violation on the internal structure of nucleons?

Terms from EW sector

Weak P-violation

Terms from QCD sector

P-symmetry

QCD sector

QCD Lagrangian is invariant under parity transformations

Are there any effects of QCD P-violation on the internal structure of nucleons?

Terms from EW sector

Weak P-violation



Terms from QCD sector

Strong P-violation



# Which implications could the presence of strong P-violation cause to inclusive DIS?



### $l(\ell) + N(P) \to \gamma^*(q) \to l(\ell') + X$



### **Cross Section**

 $\frac{d^3\sigma}{dx_B dy d\phi_S} = \frac{\alpha^2 y}{2 Q^4} \underbrace{L_{\mu\nu}(l,l',\lambda_e)}_{2MW^{\mu\nu}(q,P,S)} 2MW^{\mu\nu}(q,P,S)$ 

### **Cross Section**

$$\frac{d^3\sigma}{dx_B dy d\phi_S} = \frac{\alpha^2 y}{2 Q^4} \underbrace{L_{\mu\nu}(l,l',\lambda_e)}_{2MW^{\mu\nu}(q,P,S)} 2MW^{\mu\nu}(q,P,S)$$

In general

$$\frac{d^3\sigma}{dx_B dy d\phi_S} = \frac{\alpha^2 y}{2Q^4} \sum_{j=\gamma,\gamma Z,Z} \eta^j L^{(j)}_{\mu\nu}(l,l';\lambda_e) 2MW^{\mu\nu(j)}(q,P,S)$$

### **Cross Section**

$$\frac{d^3\sigma}{dx_B dy d\phi_S} = \frac{\alpha^2 y}{2 Q^4} \underbrace{L_{\mu\nu}(l,l',\lambda_e)}_{2MW^{\mu\nu}(q,P,S)} 2MW^{\mu\nu}(q,P,S)$$

In general

$$\frac{d^3\sigma}{dx_B dy d\phi_S} = \frac{\alpha^2 y}{2Q^4} \sum_{j=\gamma,\gamma Z,Z} \eta^j L^{(j)}_{\mu\nu}(l,l';\lambda_e) 2MW^{\mu\nu(j)}(q,P,S)$$

$$\eta^{\gamma} = 1 \qquad \qquad \eta^{\gamma Z} = \left(\frac{G_F M_Z^2}{2\sqrt{2}\pi\alpha}\right) \frac{Q^2}{Q^2 + M_Z^2} \qquad \qquad \eta^Z = (\eta^{\gamma Z})^2$$

$$2MW_{\mu\nu}(q,P) = \sum_{X} \int \frac{d^3 P_X}{2E_X} \delta^4(P+q-P_X) \langle P|J^{\dagger}_{\mu}(0)|P_X\rangle \langle P_X|J_{\nu}(0)|P\rangle$$

$$2MW_{\mu\nu}(q,P) = \sum_{X} \int \frac{d^3 P_X}{2E_X} \delta^4(P+q-P_X) \langle P|J^{\dagger}_{\mu}(0)|P_X\rangle \langle P_X|J_{\nu}(0)|P\rangle$$

Dominant contribution on the Light-Cone

$$2MW_{\mu\nu}(q,P) = \sum_{X} \int \frac{d^{3}P_{X}}{2E_{X}} \delta^{4}(P+q-P_{X}) \langle P|J_{\mu}^{\dagger}(0)|P_{X}\rangle \langle P_{X}|J_{\nu}(0)|P\rangle$$
  
Dominant contribution on the Light-Cone

$$2MW^{\mu\nu}(q, P, S) = \sum_{q} e_q^2 \frac{1}{2} \operatorname{Tr} \left[ \Phi(q, P, S) \Gamma^{\mu} \gamma^+ \Gamma^{\nu} \right]$$









Correlation distribution function





J. Collins, "Foundation of Perturbative QCD"

M. Anselmino et al., Z. Phys. C 64, 267 (1997)

### **Partonic correlator** (unpolarized)

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

### **Partonic correlator** (unpolarized)

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar

Lorenz scalar

### **Partonic correlator** (unpolarized)

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Lorenz scalar Hermiticity
Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Parity invariance Lorenz scalar Hermiticity

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Parity invariance Lorenz scalar Hermiticity

 $\mathbb{1}, \ \gamma^{\mu}, \ \sigma^{\mu\nu}$ 

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Parity invariance

Lorenz scalar Hermiticity <del>Parity invariance</del>

 $\mathbb{1}, \ \gamma^{\mu}, \ \sigma^{\mu\nu}$ 

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Parity invariance

 $\mathbb{1}, \ \gamma^{\mu}, \ \sigma^{\mu\nu}$ 

Lorenz scalar Hermiticity <del>Parity invariance</del>

$$i\gamma^5, \ \gamma^\mu\gamma^5, \ i\gamma^5\sigma^{\mu
u}$$

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Parity invariance Lorenz scalar Hermiticity <del>Parity invariance</del>

 $\mathbb{1}, \ \gamma^{\mu}, \ \sigma^{\mu\nu}$ 

 $i\gamma^5, \ \gamma^{\mu}\gamma^5, \ i\gamma^5\sigma^{\mu\nu}$ 

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Parity invariance Lorenz scalar Hermiticity <del>Parity invariance</del>

 $\mathbb{1}, \ \gamma^{\mu}, \ \sigma^{\mu\nu}$ 

$$i\gamma^5, \ \gamma^\mu\gamma^5, \ i\gamma^5\sigma^{\mu
u}$$

$$\Phi_{\rm PE}(x) \simeq \frac{1}{2} f_1(x) \gamma^-$$

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Parity invariance Lorenz scalar Hermiticity <del>Parity invariance</del>

 $\mathbb{1}, \ \gamma^{\mu}, \ \sigma^{\mu\nu}$ 

 $i\gamma^5, \ \gamma^\mu\gamma^5, \ i\gamma^5\sigma^{\mu
u}$ 

$$\Phi_{\rm PE}(x) \simeq \frac{1}{2} f_1(x) \gamma^- \qquad \qquad \Phi_{\rm PV}(x) \simeq \frac{1}{2} g_1^{\rm PV}(x) \gamma^5 \gamma^-$$

Integrated correlator

$$\Phi_{ij}(x_B) = \int \frac{d\xi^-}{2\pi} e^{ik\cdot\xi} \langle P|\bar{\psi}_j(0)\psi_i(\xi)|P\rangle_{\xi^+=\xi_T=0}$$

Lorenz scalar Hermiticity Parity invariance Lorenz scalar Hermiticity <del>Parity invariance</del>

$$\mathbb{1}, \ \gamma^{\mu}, \ \sigma^{\mu
u}$$
  $i\gamma^5, \ \gamma^{\mu}\gamma^5, \ i\gamma^5\sigma^{\mu
u}$ 

$$\Phi_{\rm PE}(x) \simeq \frac{1}{2} f_1(x) \gamma^- \qquad \qquad \Phi_{\rm PV}(x) \simeq \frac{1}{2} g_1^{\rm PV}(x) \gamma^5 \gamma^-$$

$$\Phi(x) = \Phi_{\rm PE}(x) + \Phi_{\rm PV}(x)$$

$$\frac{d\sigma^{\pm}}{dxdy} = \frac{2\pi\alpha^2}{xyQ^2} \left[ \left( Y_+ + \gamma^2 y^2 / 2 \right) \left( F_{2UU} + \lambda F_{2LU}^{\pm} \right) - y^2 \left( F_{L,UU} + \lambda F_{L,LU}^{\pm} \right) - \frac{Y_-}{\sqrt{1+\gamma^2}} \left( xF_{3UU}^{\pm} + \lambda xF_{3LU} \right) \right]$$

$$\frac{d\sigma^{\pm}}{dxdy} = \frac{2\pi\alpha^2}{xyQ^2} \Big[ Y_+ F_2^{\pm} - y^2 F_L^{\pm} \mp Y_- x F_3^{\pm} \Big]$$
PDG 2023

 $xF_{3LU}(x,Q^2) = xF_3^{(\gamma)} - g_V^e \eta_{\gamma Z} xF_3^{(\gamma Z)} + \left(g_V^{e^2} + g_A^{e^2}\right) \eta_Z xF_3^{(Z)}$ 

$$xF_{3LU}(x,Q^2) = xF_3^{(\gamma)} - g_V^e \eta_{\gamma Z} xF_3^{(\gamma Z)} + \left(g_V^{e^2} + g_A^{e^2}\right) \eta_Z xF_3^{(Z)}$$

$$xF_{3}^{(\gamma)}(x,Q^{2}) = 0$$
  

$$xF_{3}^{(\gamma Z)}(x,Q^{2}) = \sum_{q} 2e_{q}g_{A}^{q}xf_{1}^{(q-\bar{q})}$$
  

$$xF_{3}^{(Z)}(x,Q^{2}) = \sum_{q} 2g_{V}^{q}g_{A}^{q}xf_{1}^{(q-\bar{q})}$$

$$xF_{3LU}(x,Q^2) = xF_3^{(\gamma)} - g_V^e \eta_{\gamma Z} xF_3^{(\gamma Z)} + \left(g_V^{e^2} + g_A^{e^2}\right) \eta_Z xF_3^{(Z)}$$

$$xF_{3LU}(x,Q^2) = xF_3^{(\gamma)} - g_V^e \eta_{\gamma Z} xF_3^{(\gamma Z)} + \left(g_V^{e^2} + g_A^{e^2}\right) \eta_Z xF_3^{(Z)}$$

 $xF_3^{(\gamma)}(x,Q^2) = 0$  $xF_{3}^{(\gamma Z)}(x,Q^{2}) = \sum 2e_{q}g_{A}^{q}xf_{1}^{(q-\bar{q})}$  $xF_{3}^{(Z)}(x,Q^{2}) = \sum 2g_{V}^{q}g_{A}^{q}xf_{1}^{(q-\bar{q})}$ Additional contributions due to the new PV parton distribution

 $x\Delta F_3^{(\gamma)}(x,Q^2) = -\sum_q e_q^2 x g_1^{\mathrm{PV}(q+\bar{q})}$  $x\Delta F_3^{(\gamma Z)}(x,Q^2) = -\sum 2e_q g_V^q x g_1^{\mathrm{PV}(q+\bar{q})}$  $x\Delta F_3^{(Z)}(x,Q^2) = -\sum (g_V^{q2} + g_A^{q2}) x g_1^{\mathrm{PV}(q+\bar{q})}$ 

$$xF_{3LU}(x,Q^2) = xF_3^{(\gamma)} - g_V^e \eta_{\gamma Z} xF_3^{(\gamma Z)} + \left(g_V^{e^2} + g_A^{e^2}\right) \eta_Z xF_3^{(Z)}$$

$$xF_{3}^{(\gamma)}(x,Q^{2}) = 0$$

$$xF_{3}^{(\gamma Z)}(x,Q^{2}) = \sum_{q} 2e_{q}g_{A}^{q}xf_{1}^{(q-\bar{q})}$$

$$xF_{3}^{(Z)}(x,Q^{2}) = \sum_{q} 2g_{V}^{q}g_{A}^{q}xf_{1}^{(q-\bar{q})}$$

$$xL$$
Additional contributions
due to the new PV parton

distribution

MAIN INNOVATION OF PV-HYPOTESIS

$$egin{aligned} &x\Delta F_3^{(\gamma)}(x,Q^2) = -\sum_q e_q^2 x g_1^{\mathrm{PV}(q+ar{q})} \ &x\Delta F_3^{(\gamma Z)}(x,Q^2) = -\sum_q 2 e_q g_V^q x g_1^{\mathrm{PV}(q+ar{q})} \ &x\Delta F_3^{(Z)}(x,Q^2) = -\sum_q \left(g_V^{q2} + g_A^{q2}\right) x g_1^{\mathrm{PV}(q+ar{q})} \end{aligned}$$

$$\frac{d\sigma^{\pm}}{dxdy} = \frac{2\pi\alpha^2}{xyQ^2} \left[ \left( Y_+ + \gamma^2 y^2 / 2 \right) \left( F_{2UU} + \lambda F_{2LU}^{\pm} \right) - y^2 \left( F_{L,UU} + \lambda F_{L,LU}^{\pm} \right) - \frac{Y_-}{\sqrt{1+\gamma^2}} \left( xF_{3UU}^{\pm} + \lambda xF_{3LU} \right) \right]$$

$$\frac{d\sigma^{\pm}}{dxdy} = \frac{2\pi\alpha^2}{xyQ^2} \left[ \left( Y_+ + \gamma^2 y^2/2 \right) \left( F_{2UU} + \lambda F_{2LU}^{\pm} \right) - y^2 \left( F_{L,UU} + \lambda F_{L,LU}^{\pm} \right) - \frac{Y_-}{\sqrt{1+\gamma^2}} \left( xF_{3UU}^{\pm} + \lambda xF_{3LU} \right) \right]$$

Standard DIS structure functions

$$\frac{d\sigma^{\pm}}{dxdy} = \frac{2\pi\alpha^2}{xyQ^2} \left[ \left( Y_+ + \gamma^2 y^2 / 2 \right) \left( F_{2UU} + \lambda F_{2LU}^{\pm} \right) - y^2 \left( F_{L,UU} + \lambda F_{L,LU}^{\pm} \right) - \frac{Y_-}{\sqrt{1+\gamma^2}} \left( xF_{3UU}^{\pm} + \lambda xF_{3LU} \right) \right]$$

#### Standard DIS structure functions

$$F_{2UU}(x,Q^{2}) = F_{2}^{(\gamma)} - g_{V}^{e} \eta_{\gamma Z} F_{2}^{(\gamma Z)} + (g_{V}^{e^{2}} + g_{A}^{e^{2}}) \eta_{Z} F_{2}^{(Z)},$$
  

$$F_{2LU}^{\pm}(x,Q^{2}) = \mp g_{A}^{e} \eta_{\gamma Z} F_{2}^{(\gamma Z)} \pm 2g_{V}^{e} g_{A}^{e} \eta_{Z} F_{2}^{(Z)},$$
  

$$xF_{3UU}^{\pm}(x,Q^{2}) = \mp g_{A}^{e} \eta_{\gamma Z} xF_{3}^{(\gamma Z)} \pm 2g_{V}^{e} g_{A}^{e} \eta_{Z} xF_{3}^{(Z)},$$
  

$$xF_{3LU}(x,Q^{2}) = xF_{3}^{(\gamma)} - g_{V}^{e} \eta_{\gamma Z} xF_{3}^{(\gamma Z)} + (g_{V}^{e^{2}} + g_{A}^{e^{2}}) \eta_{Z} xF_{3}^{(Z)},$$

PDG 2023



## **Experimental observable**

**PVDIS** Asymmetry

$$A_{\rm PV} \equiv \frac{d\sigma(\lambda=1) - d\sigma(\lambda=-1)}{d\sigma(\lambda=1) + d\sigma(\lambda=-1)}$$

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

### **Experimental observable**

**PVDIS** Asymmetry

$$A_{\rm PV} \equiv \frac{d\sigma(\lambda=1) - d\sigma(\lambda=-1)}{d\sigma(\lambda=1) + d\sigma(\lambda=-1)}$$

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

$$=\frac{Y_{+}F_{2LU} - y^{2}F_{L,LU} - Y_{-}xF_{3LU}}{Y_{+}F_{2UU} - y^{2}F_{L,UU} - Y_{-}xF_{3UU}}$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$

### **Experimental observable**

**PVDIS** Asymmetry

$$A_{\rm PV} \equiv \frac{d\sigma(\lambda=1) - d\sigma(\lambda=-1)}{d\sigma(\lambda=1) + d\sigma(\lambda=-1)}$$

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

$$= \frac{Y_{+}F_{2LU} - y^{2}F_{L,LU} - Y_{-}xF_{3LU}}{Y_{+}F_{2UU} - y^{2}F_{L,UU} - Y_{-}xF_{3UU}}$$

Contribution of  $g_1^{PV}$  in each of the structure functions due to  $\gamma Z$  and Z channels

 $Y_{\pm} = 1 \pm (1 - y)^2$ 

#### HERA dataset (Run I + II combined)

H1 Collaboration, JHEP 09 (2012) 061

HERA dataset (Run I + II combined)

H1 Collaboration, JHEP 09 (2012) 061

 $e^+$  asymmetry: 16 data

 $e^-$  asymmetry: 17 data



HERA dataset (Run I + II combined)

H1 Collaboration, JHEP 09 (2012) 061

 $e^+$  asymmetry: 16 data

 $e^-$  asymmetry: 17 data



#### JLab6 PVDIS dataset

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

HERA dataset (Run I + II combined)

H1 Collaboration, JHEP 09 (2012) 061

 $e^+$  asymmetry: 16 data

 $e^-$  asymmetry: 17 data



#### JLab6 PVDIS dataset

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

#### $e^-$ asymmetry: 2 data

HERA dataset (Run I + II combined)

H1 Collaboration, JHEP 09 (2012) 061

 $e^+$  asymmetry: 16 data

 $e^-$  asymmetry: 17 data



#### JLab6 PVDIS dataset

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

#### SLAC-E122 dataset

C.Y. Prescott et al., Phys. Lett. B (1979)

#### $e^-$ asymmetry: 2 data

HERA dataset (Run I + II combined)

H1 Collaboration, JHEP 09 (2012) 061

 $e^+$  asymmetry: 16 data

 $e^-$  asymmetry: 17 data



#### JLab6 PVDIS dataset

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

### SLAC-E122 dataset

C.Y. Prescott et al., Phys. Lett. B (1979)

#### e<sup>-</sup> asymmetry: 2 data

 $e^-$  asymmetry: 11 data

HERA dataset (Run I + II combined)

H1 Collaboration, JHEP 09 (2012) 061

 $e^+$  asymmetry: 16 data

 $e^-$  asymmetry: 17 data



#### JLab6 PVDIS dataset

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

### SLAC-E122 dataset

C.Y. Prescott et al., Phys. Lett. B (1979)

#### $e^-$ asymmetry: 2 data

 $e^-$  asymmetry: 11 data

HERA dataset (Run I + II combined)

H1 Collaboration, JHEP 09 (2012) 061

 $e^+$  asymmetry: 16 data

 $e^-$  asymmetry: 17 data



## Imbalance between information from electron and positron beams

#### JLab6 PVDIS dataset

PVDIS Collaboration, *Nature* 506 (2014) D. Wang et al., Phys.Rev.C 91 (2015)

### SLAC-E122 dataset

C.Y. Prescott et al., Phys. Lett. B (1979)

e<sup>-</sup> asymmetry: 2 data

 $e^-$  asymmetry: 11 data

HERA dataset

HERA dataset

 $Q^2 \in (200, 30000) \text{ GeV}^2$ 

### HERA dataset

 $Q^2 \in (200, 30000) \text{ GeV}^2$ 

high-energy  $Q^2 \gg M_N^2$ no need of modification of the theory

### HERA dataset

 $Q^2 \in (200, 30000) \text{ GeV}^2$ 

high-energy  $Q^2 \gg M_N^2$ no need of modification of the theory

JLab6 + SLAC-E122 datasets

### HERA dataset

 $Q^2 \in (200, 30000) \text{ GeV}^2$ 

high-energy  $Q^2 \gg M_N^2$ no need of modification of the theory

#### JLab6 + SLAC-E122 datasets

$$Q^2 \in (0.9, 1.9) \text{ GeV}^2$$

low-energy  $Q^2 \simeq M_N^2$ 

### HERA dataset

 $Q^2 \in (200, 30000) \text{ GeV}^2$ 

high-energy  $Q^2 \gg M_N^2$ no need of modification of the theory

### JLab6 + SLAC-E122 datasets

$$Q^2 \in (0.9, 1.9) \text{ GeV}^2$$

low-energy  $Q^2 \simeq M_N^2$ applicability of the theory?

### HERA dataset

high-energy  $Q^2 \gg M_N^2$ no need of modification of the theory

#### JLab6 + SLAC-E122 datasets

low-energy

 $Q^2 \simeq M_N^2$ 

applicability of the theory?

 $Q^2 \in (200, 30000) \text{ GeV}^2$ 

 $Q^2 \in (0.9, 1.9) \text{ GeV}^2$ 

#### **Target-Mass Corrections**

e.g., A. Bacchetta et al., JHEP 02 (2007)
# Experimental data: energy range

### HERA dataset

high-energy  $Q^2 \gg M_N^2$ no need of modification of the theory

#### JLab6 + SLAC-E122 datasets

low-energy  $Q^2 \simeq M_N^2$ applicability of the theory?  $Q^2 \in (200, 30000) \text{ GeV}^2$ 

$$Q^2 \in (0.9, 1.9) \text{ GeV}^2$$

#### **Target-Mass Corrections**

e.g., A. Bacchetta et al., JHEP 02 (2007)

#### **EW** radiative corrections

J. Erler, S. Su, Prog.Part.Nucl.Phys. 71 (2013)

# Experimental data: energy range

#### HERA dataset

high-energy  $Q^2 \gg M_N^2$ no need of modification of the theory

#### JLab6 + SLAC-E122 datasets

low-energy

 $Q^2 \simeq M_N^2$ 

applicability of the theory?

$$\begin{aligned} C_{1u} &= 2g_A^e g_V^u = 2\left(-\frac{1}{2}\right)\left(\frac{1}{2} - \frac{4}{3}\sin^2\theta_W\right) \\ C_{2u} &= 2g_V^e g_A^u = 2\left(-\frac{1}{2} + 2\sin^2\theta_W\right)\left(\frac{1}{2}\right) \\ C_{1d} &= 2g_A^e g_V^d = 2\left(-\frac{1}{2}\right)\left(-\frac{1}{2} + \frac{2}{3}\sin^2\theta_W\right) \\ C_{2d} &= 2g_V^e g_A^d = 2\left(-\frac{1}{2} + 2\sin^2\theta_W\right)\left(-\frac{1}{2}\right) \end{aligned}$$

 $Q^2 \in (200, 30000) \text{ GeV}^2$ 

$$Q^2 \in (0.9, 1.9) \text{ GeV}^2$$

#### **Target-Mass Corrections**

e.g., A. Bacchetta et al., JHEP 02 (2007)

#### **EW** radiative corrections

J. Erler, S. Su, Prog.Part.Nucl.Phys. 71 (2013)

# Experimental data: energy range

#### HERA dataset

high-energy  $Q^2 \gg M_N^2$ no need of modification of the theory

#### JLab6 + SLAC-E122 datasets

low-energy

 $Q^2 \simeq M_N^2$ 

applicability of the theory?

$$C_{1u} = 2g_A^e g_V^u = 2\left(-\frac{1}{2}\right) \left(\frac{1}{2} - \frac{4}{3}\sin^2\theta_W\right)$$
$$C_{2u} = 2g_V^e g_A^u = 2\left(-\frac{1}{2} + 2\sin^2\theta_W\right) \left(\frac{1}{2}\right)$$
$$C_{1d} = 2g_A^e g_V^d = 2\left(-\frac{1}{2}\right) \left(-\frac{1}{2} + \frac{2}{3}\sin^2\theta_W\right)$$
$$C_{2d} = 2g_V^e g_A^d = 2\left(-\frac{1}{2} + 2\sin^2\theta_W\right) \left(-\frac{1}{2}\right)$$

 $Q^2 \in (200, 30000) \text{ GeV}^2$ 

$$Q^2 \in (0.9, 1.9) \text{ GeV}^2$$

#### **Target-Mass Corrections**

e.g., A. Bacchetta et al., JHEP 02 (2007)

#### **EW** radiative corrections

J. Erler, S. Su, Prog.Part.Nucl.Phys. 71 (2013)

$$\begin{split} C_{1u}^{\rm SM} &= -0.1887 - 0.0011 \times \frac{2}{3} \ln(\langle Q^2 \rangle / 0.14 \text{GeV}^2) \\ C_{1d}^{\rm SM} &= 0.3419 - 0.0011 \times \frac{-1}{3} \ln(\langle Q^2 \rangle / 0.14 \text{GeV}^2) \\ C_{2u}^{\rm SM} &= -0.0351 - 0.0009 \ln(\langle Q^2 \rangle / 0.078 \text{ GeV}^2) \\ C_{2d}^{\rm SM} &= 0.0248 + 0.0007 \ln(\langle Q^2 \rangle / 0.021 \text{ GeV}^2) \end{split}$$









$$xF_{3}^{j}(x,Q^{2}) = \sum_{q} C_{q}^{j} xf_{1}^{(q-\bar{q})}$$

**Parameterization of** 
$$g_1^{PV}(x, Q^2)$$



$$xF_3^j(x,Q^2) = \sum_q C_q^j x f_1^{(q-\bar{q})} \qquad \Delta xF_3^j(x,Q^2) = -\sum_q C_q^{'j} x \alpha g_1$$

**Parameterization of** 
$$g_1^{PV}(x, Q^2)$$

$$\gamma^5 \gamma^\mu \longrightarrow$$
 Same evolution as helicity PDF  $g_1(x, Q^2)$   
 $\longrightarrow$  C-odd

$$xF_{3}^{j}(x,Q^{2}) = \sum_{q} C_{q}^{j} x f_{1}^{(q-\bar{q})} \qquad \Delta xF_{3}^{j}(x,Q^{2}) = -\sum_{q} C_{q}^{'j} x \alpha g_{1}^{(q+\bar{q})}$$

**Parameterization of** 
$$g_1^{PV}(x, Q^2)$$

$$\gamma^5 \gamma^\mu \longrightarrow Same evolution as helicity PDF g_1(x, Q^2)$$
  
 $\longrightarrow C-odd$ 

$$xF_3^j(x,Q^2) = \sum_q C_q^j x f_1^{(q-\bar{q})} \qquad \Delta xF_3^j(x,Q^2) = -\sum_q C_q'^j x \alpha g_1^{(q+\bar{q})}$$

$$F_2^j(x,Q^2) = \sum_q \hat{C}_q^j x f_1^{(q+\bar{q})}$$

**Parameterization of** 
$$g_1^{PV}(x, Q^2)$$

$$\gamma^{5}\gamma^{\mu} \longrightarrow Same \text{ evolution as helicity PDF } g_{1}(x,Q^{2})$$

$$\longrightarrow C\text{-odd}$$

$$xF_{3}^{j}(x,Q^{2}) = \sum_{q} C_{q}^{j}xf_{1}^{(q-\bar{q})} \qquad \Delta xF_{3}^{j}(x,Q^{2}) = -\sum_{q} C_{q}^{'j}x\alpha g_{1}^{(q+\bar{q})}$$

$$F_{2}^{j}(x,Q^{2}) = \sum_{q} \hat{C}_{q}^{j}xf_{1}^{(q+\bar{q})} \qquad \Delta F_{2}^{j}(x,Q^{2}) = -\sum_{q} \hat{C}_{q}^{'j}x\alpha g_{1}^{(q-\bar{q})}$$

**Parameterization of** 
$$g_1^{PV}(x, Q^2)$$

$$\gamma^{5}\gamma^{\mu} \longrightarrow Same \text{ evolution as helicity PDF } g_{1}(x,Q^{2})$$

$$\longrightarrow C\text{-odd}$$

$$xF_{3}^{j}(x,Q^{2}) = \sum_{q} C_{q}^{j}xf_{1}^{(q-\bar{q})} \qquad \Delta xF_{3}^{j}(x,Q^{2}) = -\sum_{q} C_{q}^{'j}x\alpha g_{1}^{(q+\bar{q})}$$

$$F_{2}^{j}(x,Q^{2}) = \sum_{q} \hat{C}_{q}^{j}xf_{1}^{(q+\bar{q})} \qquad \Delta F_{2}^{j}(x,Q^{2}) = -\sum_{q} \hat{C}_{q}^{'j}x\alpha g_{1}^{(q-\bar{q})}$$

1 parameter to be fitted

PDF set for

PDF set for

 $f_1(x,Q^2)$ 

NNPDF3.1 Ball et al. (NNPDF), EPJ C 77 (2017)

PDF set for

 $f_1(x,Q^2)$ 

 $g_1(x,Q^2)$ 

NNPDF3.1 Ball et al. (NNPDF), EPJ C 77 (2017)

NNPDFpol1.1

Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

PDF set for

 $f_1(x, Q^2)$ 

NNPDF3.1 Ball et al. (NNPDF), EPJ C 77 (2017)

 $g_1(x,Q^2)$ 

### NNPDFpol1.1

Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF

PDF set for

 $f_1(x,Q^2)$ 

NNPDF3.1 Ball et al. (NNPDF), EPJ C 77 (2017)

 $g_1(x,Q^2)$ 

NNPDFpol1.1 Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF

100 MC replicas of helicity PDF

PDF set for

 $f_1(x, Q^2)$ 

NNPDF3.1 Ball et al. (NNPDF), EPJ C 77 (2017)

 $g_1(x,Q^2)$ 

NNPDFpol1.1

Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF

100 MC replicas of helicity PDF

100 MC replicas experimental data

PDF set for

 $f_1(x, Q^2)$ 

NNPDF3.1 Ball et al. (NNPDF), EPJ C 77 (2017)

 $g_1(x,Q^2)$ 

NNPDFpol1.1 Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF

100 MC replicas of helicity PDF

100 MC replicas experimental data

PDF set for

 $f_1(x, Q^2)$ 

 $g_1(x,Q^2)$ 

NNPDF3.1 Ball et al. (NNPDF), EPJ C 77 (2017)

NNPDFpol1.1

Nocera et al. (NNPDF), Nucl. Phys. B 887 (2014)

100 MC replicas of unpolarized PDF

100 MC replicas of helicity PDF

100 MC replicas experimental data

Statistical distribution of 100 values of parameter  $\alpha$ 

Results of the fit:  $\chi^2$  values

#### **<u>CASE 1</u>**: fit **WITHOUT** EW radiative corrections

|                 | N of points | χ²/N <sub>data</sub> (SM) | χ²/N <sub>data</sub> ( <b>Fit</b> ) |
|-----------------|-------------|---------------------------|-------------------------------------|
| HERA $A^+$      | 16          | 1.13                      | 1.13                                |
| HERA $A^-$      | 17          | 0.63                      | 0.63                                |
| JLab6 $A^-$     | 2           | 4.27                      | 1.12                                |
| SLAC-E122 $A^-$ | 11          | 1.23                      | 1.12                                |
| TOTAL           | <b>46</b>   | 1.07                      | 0.90                                |

Results of the fit:  $\chi^2$  values

#### **CASE 2**: fit **WITH** EW radiative corrections

|                 | N of points | χ²/N <sub>data</sub> (SM) | χ²/N <sub>data</sub> ( <b>Fit</b> ) |
|-----------------|-------------|---------------------------|-------------------------------------|
| HERA $A^+$      | 16          | 1.13                      | 1.13                                |
| HERA $A^-$      | 17          | 0.63                      | 0.63                                |
| JLab6 $A^-$     | 2           | 1.92                      | 0.91                                |
| SLAC-E122 $A^-$ | 11          | 1.13                      | 1.09                                |
| TOTAL           | <b>46</b>   | 0.94                      | 0.88                                |













### Sizeable improvement of the fit w.r.t. SM predictions



# Sizeable improvement of the fit w.r.t. SM predictions

Old dataset with still quite large experimental errors ( > 20% )



## Sizeable improvement of the fit w.r.t. SM predictions

Old dataset with still quite large experimental errors ( > 20% )

Data points which actually drive the fit due to very small experimental errors ( ~ 1 % )

# Results of the fit: $g_1^{PV}(x, Q^2)$ extraction

CASE 2 
$$\alpha = (-1.71 \pm 1.52) \times 10^{-4}$$

fit WITH EW radiative corrections

<u>CASE 1</u>  $\alpha = (-3.20 \pm 1.53) \times 10^{-4}$ 



• The strong P- violation can give origin to a new structure function in DIS cross section for one-photon exchange

- The strong P- violation can give origin to a new structure function in DIS cross section for one-photon exchange
- A global fit of present experimental data is compatible with a non-zero contribution from a new strong PV parton density at 1 sigma

- The strong P- violation can give origin to a new structure function in DIS cross section for one-photon exchange
- A global fit of present experimental data is compatible with a non-zero contribution from a new strong PV parton density at 1 sigma
- To better investigate its behaviour, new data are needed especially at small (medium) values of Q
## **Conclusions and Outlook**

- The strong P- violation can give origin to a new structure function in DIS cross section for one-photon exchange
- A global fit of present experimental data is compatible with a non-zero contribution from a new strong PV parton density at 1 sigma
- To better investigate its behaviour, new data are needed especially at small (medium) values of Q

 Experimental data from positron beam are welcome to shed light on the complementarity with electron beam