ECAL Summary 8

ECAL Update

Update

- Compare sampling fractions between 10 11 GeV muons and 2-4 GeV electrons
 - High energy muons produce less soft-energy charge particles (due to the EM shower)
 - Act as MIP
 - Electrons deposit energy mainly by EM shower
- Compare energy deposited only from muons to understand ECAL energy deposit

Electrons: Sampling Fraction F_s(edep)

Muons : Sampling Fraction F_s (edep)

Only Edep from Muons : Sampling Fraction F_s (edep)

Sampling fraction for MIP type energy loss in the material • The sampling fraction for MIP

 $2~{\rm MeV/cm}\times0.15~{\rm cm}$

 $\frac{1}{05 \text{ cm}} = 0.319$

 $\frac{1}{(2 \text{ MeV/cm} \times 0.15 \text{ cm} + 12.8 \text{ MeV/cm} \times 0.05 \text{ cm})} =$

• This agrees with what we see from Muon simulations

Lead $dE/dx|_{min} = 1.123$ MeV.cm2/g and density is 11.4 g/cm3 Scint $dE/dx|_{min} = 1.936$ MeV.cm2/g and density is 1.03 g/cm3 Lead $dE/dx|_{min} = 12.8$ MeV/cm and layer thickness is 0.05 cm Scintillator $dE/dx|_{min} = 2$ MeV/cm and layer thickness is 0.15 cm

Material	Z	A	Z/A	dE/dxmin (MeVcm²/g)	Density (g/cm³)
H ₂ (liquid)	1	1.008	0.992	4.034	0.0708
He	2	4.002	0.500	1.937	0.125
С	6	12.01	0.500	1.745	2.27
AI	13	26.98	0.482	1.615	2.70
Cu	29	63.55	0.456	1.403	8.96
РЬ	82	207.2	0.396	1.123	11.4
w	74	183.8	0.403	1.145	19.3
U	92	238.0	0.387	1.082	19.0
Scint.			0.538	1.936	1.03
BGO			0.421	1.251	7.10
CsI			0.416	1.243	4.53
NaI			0.427	1.305	3.67

Rakitha Beminiwattha

Sampling fraction MIP vs. EDEP

- From electron simulation, we see that sampling fraction F_s (edep) is significantly smaller than F_s (MIP)
 - $F_s(edep)/F_s(MIP)$ ~ 0.64 → e⁻/mip ratio
- The dominant part of the electron edep in the scintillator is not produced by minimum ionizing particles (MIP), but rather by the EM shower (low-energy electrons/positrons) reaching the scintillator