High Precision Laser Polarization Measurement

Jaideep Singh

Atom Trapping Group Medium Energy Physics Group Physics Division

Combined Polarimetry Requirement

SOLID

Table 2.2: Error budget in A_{PV}^{EW} at x=0.4 for the test of the Standard Model Source: SOLID PAC 35 addendum

Source

Uncertainty in %

Statistics	0.3
Polarimetry	0.4
Q^2	0.2
Radiative Corrections	0.3
Total	0.6

Background Process	Fractional Error (%)
Signal Statistics	2.08
Absolute value of Q^2	0.5
beam (second order)	0.4
beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4
beam (first order)	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \to \pi + X$	0.3
Transverse polarization	0.2
neutrals (soft photons, neutrons)	0.1
Total	1.02

Table 3.2: Summary of systematic errorsSource: K. PaschkeSOLID Collaboration Meeting @ JLab: Jan 28-29, 2011

MOLLER

Combined Polarimetry Requirement

SOLID

MOLLER

Table 2.2: Error budget in A_{PV}^{EW} at x=0.4 for the test of the Standard Model Source: SOLID PAC 35 addendum

Source

Uncertainty in %

Statistics	0.3
Polarimetry	0.4
Q^2	0.2
Radiative Corrections	0.3
Total	0.6

Background Process	Fractional Error (%)
Signal Statistics	2.08
Absolute value of Q^2	0.5
beam (second order)	0.4
beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4
beam (first order)	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \to \pi + X$	0.3
Transverse polarization	0.2
neutrals (soft photons, neutrons)	0.1
Total	1.02

Table 3.2: Summary of systematic errors Source: K. Paschke

SOLID Collaboration Meeting @ JLab: Jan 28-29, 2011

Compton Systematics at 11 GeV

Relative Error (%)	electron	photon
E _{beam}	0.03	0.03
Laser Polarization	0.20	0.20
Radiative Corrections	0.1	0.1
False Asymmetries	0.01	0.01
Background	0.05	0.05
Deadtime / Pileup	0.2	0.1
Analyzing power	0.15	0.40
Total	0.34	0.47

correlated

uncorrelated

Source: K. Paschke

Compton Systematics at 11 GeV

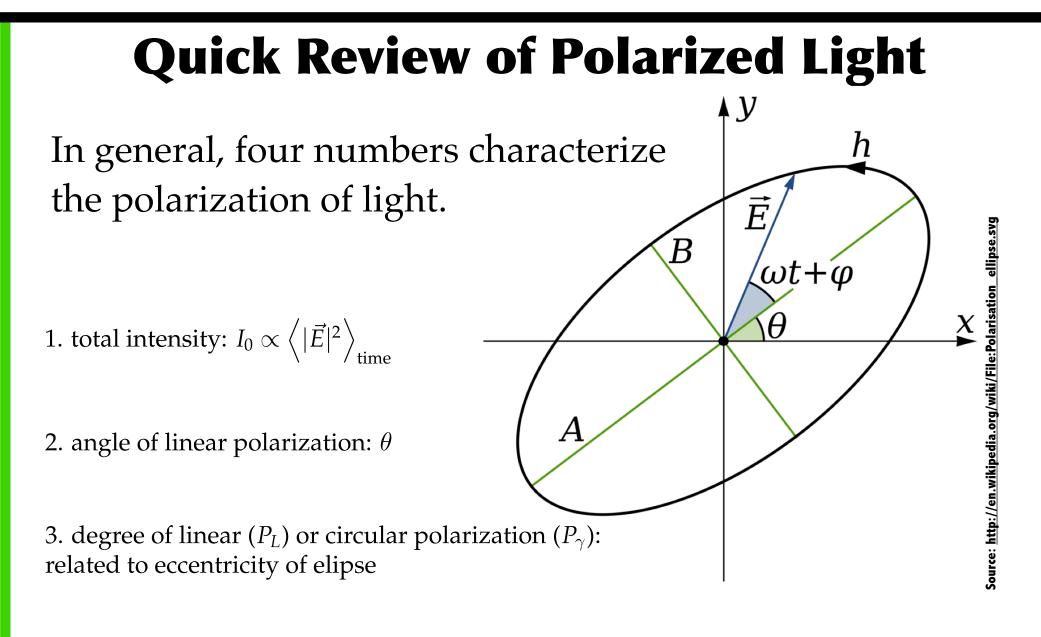
Relative Error (%)	electron	photon
E _{beam}	0.03	0.03
Laser Polarization	0.20	0.20
Radiative Corrections	0.1	0.1
False Asymmetries	0.01	0.01
Background	0.05	0.05
Deadtime / Pileup	0.2	0.1
Analyzing power	0.15	0.40
Total	0.34	0.47
Source: K. Paschke		

correlated

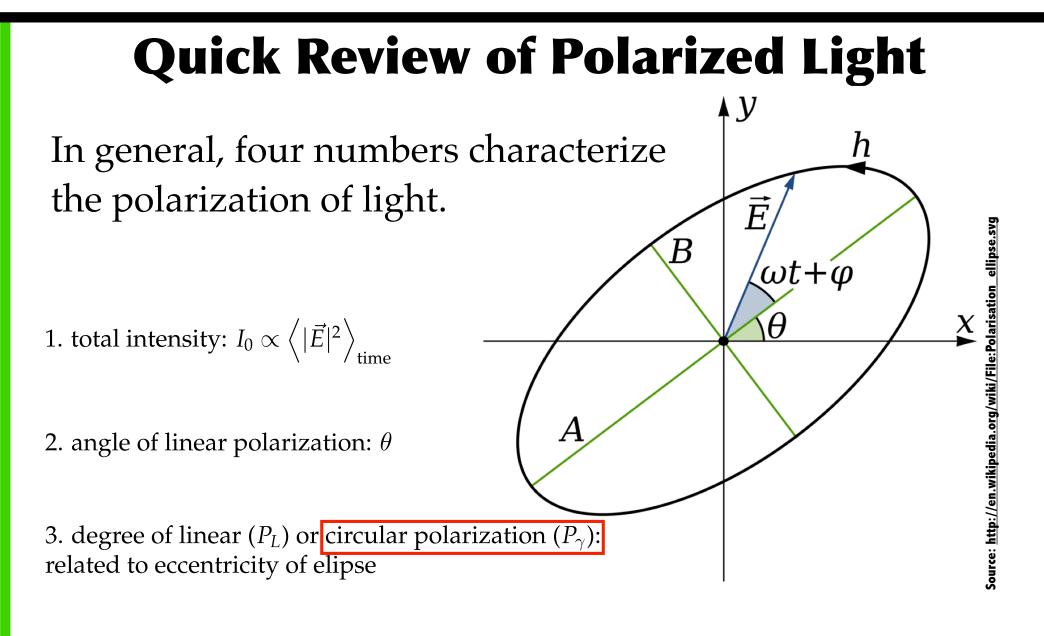
uncorrelated

1. Laser polarization is the <u>largest</u> correlated systematic.

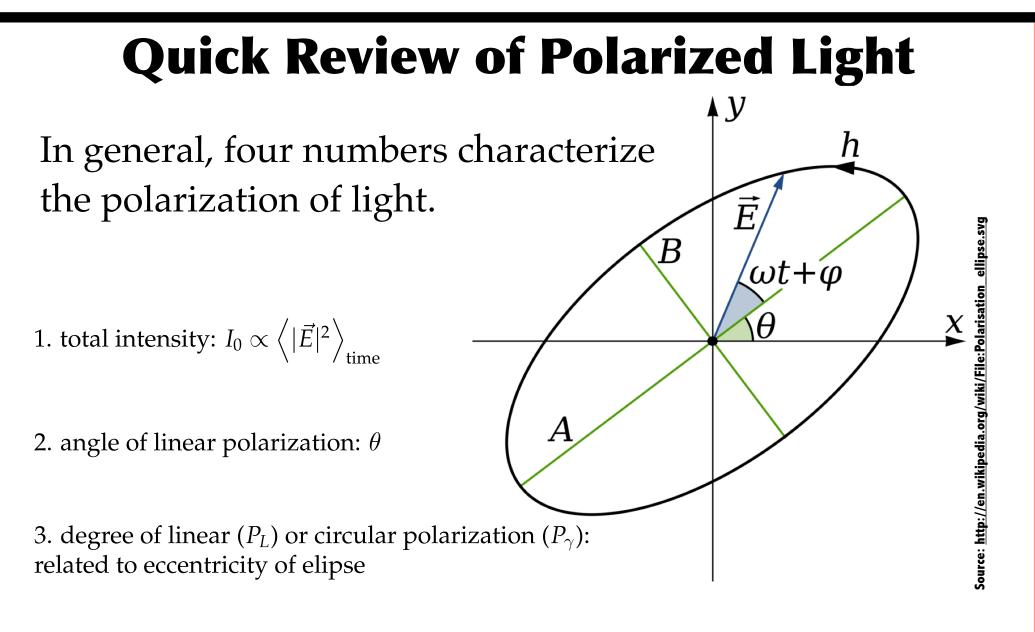
Compton Systematics at 11 GeV


Relative Error (%)	electron	photon	
E _{beam}	0.03	0.03	
Laser Polarization	0.20	0.20	
Radiative Corrections	0.1	0.1	
False Asymmetries	0.01	0.01	
Background	0.05	0.05	
Deadtime / Pileup	0.2	0.1	
Analyzing power	0.15	0.40	
Total	0.34	0.47	

correlated


uncorrelated

Source: K. Paschke


- 1. Laser polarization is the <u>largest</u> correlated systematic.
- 2. My understanding is that, at present, the laser polarization is known to 0.35% to 2%. This is mainly due to our understanding of the "transfer function."

4. depolarization: $D = \sqrt{1 - P_L^2 - P_\gamma^2}$ (D = 0 for monochromatic coherent light)

4. depolarization: $D = \sqrt{1 - P_L^2 - P_\gamma^2}$ (D = 0 for monochromatic coherent light)

4. depolarization: $D = \sqrt{1 - P_L^2 - P_\gamma^2}$ (D = 0 for monochromatic coherent light) For D = 0, $P_{\gamma} = (99.5 \pm 0.2)\%$ corresponds to $P_L = (10 \pm 2)\%$.

Measuring the Polarization

Rotating linear polarizer (currently used)

- 1. sensitive to residual linear polarization
- 2. insensitive to sign of circular
- 3. slow rotation measurements no faster than 1 Hz, but at present much slower

Rotating quarter waveplate (currently used)

- 1. relatively insensitive to residual linear polarization
- 2. sensitive to sign of circular polarization
- 3. slow rotation measurements no faster than 1 Hz, but at present much slower

Photoelastic Modulator w/ Lockin Detection (proposed or something like it)

- 1. first harmonic can be made sensitive to sign of circular polarization
- 2. second harmonic can be made sensitive to residual linear polarization
- 3. very fast measurements (100 Hz or more)

Possible Issues at 0.2% Precision

Cavity Setup

- 1. no direct measurement inside of cavity transfer function
- 2. put a retractable beam sampler and polarization analyzer inside the cavity?
- 3. temporal stability of polarization inside the cavity?
- 4. change of polarization when cavity is locked relative to unlocked cavity?

RF Pulsed Laser

- 1. time-dependent polarization? (fast photodiodes up to 2 GHz exist)
- 2. high peak power (beam samplers and / or high damage threshold optics)

Some Things That I Think Are Important

- 1. Measure extinction ratio of polarization analyzer
- 2. Measure the depolarization of the light (i.e validate *D* is nearly zero)
- 3. Continuous online relative sign monitoring
- 4. Continuous measurement of circular polarization
- 5. Fast analysis of polarization
- Measure the polarization changing properties of <u>everything</u> (e.g. vacuum windows, cavity mirrors, polarization optics, analysis optics, beam samplers, etc.)
- 7. Measure & control the orientation of the analyzer axes with respect to the Compton Interaction Point

8. ?

Some Things That I Think Are Important

- 1. Measure extinction ratio of polarization analyzer
- 2. Measure the depolarization of the light (i.e validate *D* is nearly zero)
- 3. Continuous online relative sign monitoring
- 4. Continuous measurement of circular polarization
- 5. Fast analysis of polarization
- Measure the polarization changing properties of <u>everything</u> (e.g. vacuum windows, cavity mirrors, polarization optics, analysis optics, beam samplers, etc.)
- 7. Measure & control the orientation of the analyzer axes with respect to the Compton Interaction Point
- 8. ?

Take-home message:

With dedicated effort & attention to detail, 0.2% precision is not totally unreasonable!