Compton Calorimeter at 11 GeV

G. Franklin, B. Quinn, M. Friend. Carnegie Mellon University

 Compton Scattering at 11 GeV Compton energy scaling Asymmetries Calorimeter crystal resolution
 Synchrotron Light Scaling with energy Dependence on fringe field and aperture Possible beamline modifications for 11 GeV

Compton Edge:
$$k_{max} = a4\gamma^2 k_0$$

 $k_0 = photon \ energy$
 $\gamma = E_e/m_e$
 $a = 1/(1 + 4\gamma k_0/m_e)$
Asymmetry: $A_{max} = A(k = k_{max}) = \frac{1-a^2}{1+a^2} = \eta \frac{1+\eta^2/2}{1+\eta+\eta^2/2}$
 $\eta = 4\gamma k_0/m_e$

Cross Section: $\sigma = \pi r_0^2 a (1 + higher \text{ order in } \eta)$

	$k_0 =$	1.165 eV	(IR)	$k_0 = 2.33 eV \ (green)$		
E_{e}	a	k_{max}	A_{max}	a	k_{max}	A_{max}
(MeV)		(MeV)		$({ m MeV})$		
$1,\!375$.976	33	.024	.953	64	.048
2,750	.953	129	.047	.911	246	.093
$5,\!500$.911	492	.093	.836	903	.177
$11,\!000$.817	$1,\!806$.177	.718	$3,\!101$.320

Angular cone of Compton photons

Compton Photon Radius at 6 meters vs Photon Energy

GSO Crystal Resolution GEANT4 simulations for 5 photon energies existing Hall A GSO Crystal (6 cm diam x 15 cm)

GSO Crystal Resolution Simulations of larger crystals 3.0 GeV incident photons ~150 photo electron/ MeV deposited

Better to use cheaper, bigger crystal? Lead-glass?

Synchrotron Radiation

Photon calorimeter sees synchrotron light from dipoles #2 and #3

Synchrotron Radiation

Synch. radiation for 1 electron bent thru angle $\Delta \theta$:

$$\frac{dE}{d\theta}\Delta\theta = \frac{2}{3}\alpha\frac{\hbar c}{R}\gamma^4\Delta\theta$$

For 11 GeV running: R = 22.8 m, γ = 2.2 \times 10⁴, γ ⁴=2 \times 10¹⁷

Energy radiated by an electron for $\Delta \theta = 0.001$

$$E = 4 \times 10^{-17} MeV \gamma^4 \Delta \theta = .008 MeV$$

For 100 μ A beam

 $P = .008 MeV/electron \times 6.2 \times 10^{14} electron/s = 5 \times 10^{12} MeV/s$

Compare to Compton signal

$$P = \frac{1}{2}(3100 \ MeV)(10^5 Compton \ events/s) = 1.6 \times 10^8 \ MeV/s$$

Only exit of Dipole 2 and entrance of Dipole 3 contribute

Results using Poisson fringe field

B. Quinn's simulation of energy distribution Fringe field reduces flux AND softens energy distribution

Wide collimator used at start of PVDIS produced hard synchroton beam

Consider adding low-field dipoles

Consider adding 65 cm low-field coils before and after interaction point

Bottom Line Added low-field dipoles can reduce 11 GeV/c synchrotron radiation to levels encountered during Happex

Conclusions

Crystal

GSO not optimal Bigger crystal would improve resolution Less photo electrons OK? Maybe use Lead Glass?

Synchrotron Radiation

Important to model fringe field and collimator correctly Adding low B-field regions greatly reduces background

• Crystal Properties

	PbWO4	BGO	GSO	CeF ₃	BriLanCe 380	PreLude 420
Density (6/cm ³)	8.30	7.13	6.70	6.16	5.29	7.1
Rad Length (cm)	0.90	1.12	1.39	1.68	~1.9	1.2
Moliere Radius (cm)	2.0	2.3	2.4	2.6	?	?
Decay time (ns)	50	300	56:60	30	16	41
Light output (% Nal)	0.4%	9%	45%	6.6%	165%	84%
photoelectrons (# / MeV)	8	170	850	125	3150	1600
					\$\$\$ 4 in max	Natural decay