#### **SIDIS with SoLID Detector**

Xin Qian

Caltech

#### ଅ<sub>300</sub> ≻ 200 19 100 He target 0 Scintillator Absorber MRPC FGEMx2 -100 14,5 LC 220 Light Gas Cer **GEMx** Hea 6.6 Absorbe Gas Cer -200 11.5 -300 1000 Z, cm 200 400 600 800 0

Solenoidal detector for SIDIS

SoLID Collaboration Meeting, Jan 28th, 2011

### **Current Status of SIDIS with SoLID**

- E10-006 (Approved in PAC35 ):
  - Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic Pion Production on a Transversely Polarized <sup>3</sup>He Target at 8.8 and 11 GeV.
- E11-007 (Approved in PAC 37 ):
  - Asymmetries in Semi-Inclusive Deep-Inelastic Pion production on a Longitudinally Polarized <sup>3</sup>He Target at 8.8 and 11 GeV.
- PAC Response: "A broad program of high priority physics measurements beyond that of PVDIS program certainly strengthens the case to invest in SoLID"

• White paper: <u>H. Gao et al. Eur. Phys. J. Plus 126:2 (2011)</u>

#### Semi-Inclusive Deep Inelastic Scattering



Use E&M interaction to understand "strong force" and "strong material"

Trento Convention:

Three planes: Lepton plane, Spin plane, hadron plane

Two angles:  $\phi_h$ ,  $\phi_s$ 

W': invariant mass of the residual system z: energy fraction of the leading hadron with respect to v  $k_T(P_T)$ : transverse momentum

Sensitivity to quark flavors and transverse dynamics, also parton propagation in the cold nuclear matter.



#### Leading Twist Transverse Momentum Dependent Parton Distributions (TMDs)



→ Nucleon Spin

Quark Spin

#### Status of Parton Distributions



#### Access TMDs through SIDIS



 $S_L$ ,  $S_T$ : Target Polarization;  $\lambda_e$ : Beam Polarization

#### Rich Physics in TMDs (Transversity)

- Some characteristics of transversity
  - $-h_{1T} = g_{1L}$  for non-relativistic quarks
  - No gluon transversity in nucleon
  - Chiral-odd  $\rightarrow$  difficult to access in inclusive DIS
  - Soffer's bound
    - $|h_{1T}| <= (f_1 + g_{1L})/2$
- Tensor Charge:
  - Integration of transversity over x.
  - An important quantity of nucleon.





#### Rich Physics in TMDs (Sivers Function)

- Correlation between nucleon spin with quark angular momentum a new type distribution function
  - Parton orbital angular momentum?
- Matrix element related to anomalous magnetic moment.
- Naive T-odd, also moments
- Close physics relation with twist-3 quark-gluon correlation distribution at high P<sub>T</sub>



Stan Brodsky, SLAC

 $\left. f_{1T}^{\perp q} \right|_{SIDIS} = -f_{1T}^{\perp q} \right|_{D-Y}$ 

 $\vec{p}_N$ 

Important test for Factorization

**Burkhardt**:

lensing

chromodynamic

Final-State-Interaction<sub>8</sub>

#### Rich Physics with TMDs ("Worm-Gear" Functions)

 $h_{1L} = \bigcirc - \bigcirc - \bigcirc - \bigcirc$ 

- Dominated by real part of interference between L=0 (S) and L=1 (P) states
  - Imaginary part -> BM, Sivers function
- No GPD correspondence
  - Genuine sign of intrinsic transverse motion
- Lattice QCD -> Dipole Shift in momentum space.
- Model Calculations ->  $h_{1L}^{\perp}$  =? - $g_{1T}$
- Connections with Collinear PDFs through WW approximation and LIR.





#### **Current Status on Transversity**

- Collins Asymmetries
  - sizable for proton (HERMES and COMPASS)

Large at high x, large for  $\pi^-$  ( $\pi^-$  and  $\pi^+$  has opposite sign) Unfavored Collins fragmentation as large as favored (opposite sign)

Also see Belle's data.

- consistent with 0 for deuteron (COMPASS)
- Sivers Asymmetries
  - non-zero for  $\pi^+$  from proton (HERMES), consistent with COMPASS results at high Q<sup>2</sup>?
  - consistent with zero for  $\pi^{\text{-}}$  from proton and for  $\pi^{\text{+}}$  and  $\pi^{\text{-}}$  from deuteron
  - similar for K<sup>+</sup>
- Very active theoretical and experimental study
  - RHIC-spin, JLab (Hall A 6 GeV, <u>CLAS12</u>, <u>HallA/C 12 GeV</u>), Belle, <u>FAIR (PAX)</u> <u>Future EIC</u>
  - Global Fits/models by Anselmino et al., Yuan et al. and ...

### E06-010 Experimental Setup



- Electron beam: E = 5.9 GeV
- 40 cm polarized <sup>3</sup>He target
- BigBite at 30° to detect electron:
  - $-P_{e} = 0.7 \sim 2.2 \text{ GeV/c}$
  - HRS<sub>L</sub> at 16° to detect hadron:
    - $P_{h} = 2.35 \text{ GeV/c}$
- Measure Collins and Sivers asymmetries in valence range:

$$-x_{\rm B} = 0.1 \sim 0.4$$

#### **Preliminary Results**



Finalizing the analysis on neutron. Submit the papers this spring! Also A<sub>LT</sub>!

### SoLID Setup for SIDIS on <sup>3</sup>He

- Together with a high luminosity polarized <sup>3</sup>He target.
  - Effective neutron target and the highest luminosity of polarized target.
- Large acceptance -> 4-D binning.
  - Observable depends on x,  $Q^2$ , z and  $P_T$ .
- Full azimuthal angular coverage -> smalller systematic uncertainties in SSA measurement and separation of different terms.
- Fixed-target experiment -> large-x (valence) physics

### Hall A Pol. <sup>3</sup>He Target



- Assuming achieved performance
- Supports both long. & trans. spin
- High polarization
- Frequent spin flip



Effective pol. neutron target

## SoLID Setup for SIDIS on <sup>3</sup>He

- Shared device with PVDIS:
  - GEM Tracker
  - Light Gas Cerenkov
  - Calorimeter
- Shared R&D in
  - GEM
  - Light collection in magnetic field.
  - Fast DAQ
  - New Calorimeter
     System



Additional devices of MRPC, scintillator plane, heavy gas Cerenkov which provide us the capability in hadron detection.

#### **Tracking with GEM detectors As an Example**

- 5 planes reconfigured from PVDIS GEM detectors (23 m<sup>2</sup>, gaps for baffles)
- Total surface for this experiment ~ 18 m<sup>2</sup>
- Need to build the first plane 1.15 m<sup>2</sup>
- Electronics will be shared

|          | $R_{min}$ | $R_{max}$ | Z    | Status   | PVDIS              |  |
|----------|-----------|-----------|------|----------|--------------------|--|
|          | (cm)      | (cm)      | (cm) |          | configuration (cm) |  |
| Chamber1 | 46        | 76        | 197  | New      | N/A                |  |
| Chamber2 | 28        | 93        | 250  | PVDIS C1 | 50-115             |  |
| Chamber3 | 31.5      | 107.5     | 290  | PVDIS C2 | 64-140             |  |
| Chamber4 | 39        | 135       | 352  | PVDIS C3 | 104-200            |  |
| Chamber5 | 49        | 95        | 435  | PVDIS C4 | 109-215            |  |
| Chamber6 | 67        | 127       | 592  | PVDIS C4 | 109-215            |  |



#### **Kinematic Coverage**

- Precision 4-D (x, Q<sup>2</sup>, p<sub>T</sub> and z) mapping of Collins, Sivers and pretzelosity.
- Coverage with 11 GeV beam
  - Black: forward angle
  - Green: large angle
- x<sub>B</sub>: 0.05 ~ 0.6
  - Majority of valence quark region for tensor charge
- Q<sup>2</sup>: 1 ~ 7.5 (GeV/c)<sup>2</sup>
- P<sub>T</sub>: 0 ~ 1.5 GeV/c
- W: 2.3 ~ 4 GeV
- z: 0.3 ~ 0.7
- M<sub>m</sub>: 1.6~ 3.3 GeV





#### Projections on Collins/Sivers Asymmetry (90 Days)



0.6

0.4

0.2

0

0.1

• • • • • •

. .

0.2

0.3

Similar plots for longitudinal case.

One of the major goals: Transversity Distribution!

0.4 0.5

0

?0.1

?0.2

?0.3

Х

#### Longitudinal Target Polarization (35 days)



### 4-D Mapping of SSA

| ()1.2<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | 1 < Q² ≍ 2<br>0.30 < z < 0.35<br>∓ ∓      | 1 < Q <sup>2</sup> < 2<br>0.35 < z < 0.40      | 1 < Q <sup>2</sup> < 2<br>0.40 < z < 0.45 | $1 < Q^2 < 2$<br>0.45 < z < 0.50          | 1 < Q <sup>2</sup> < 2<br>0.50 < z < 0.55               | • 1 < Q <sup>2</sup> < 2<br>0.55 < z < 0.60              | • 1 < Q <sup>2</sup> < 2<br>0.60 < z < 0.65              | • 1 < Q <sup>2</sup> < 2<br>0.65 < z < 0.70 | 1.0.2 June            |
|-------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|-----------------------|
| 0.6<br>0.4<br>0.2                                                                   |                                           |                                                |                                           |                                           |                                                         |                                                          |                                                          | jjj                                         | 70.2                  |
| ()<br>)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()     | 2 < Q <sup>2</sup> < 3<br>0.30 < z < 0.35 | 2 < Q <sup>2</sup> < 3<br>0.35 < z < 0.40<br>里 | 2 < Q <sup>2</sup> < 3<br>0.40 < z < 0.45 | 2 < Q <sup>2</sup> < 3<br>0,45 < z < 0.50 | 2 < Q <sup>2</sup> < 3<br>0.5 <mark>0</mark> < z < 0.55 | 2 < Q <sup>2</sup> < 3<br>0. <mark>5</mark> 5 < z < 0.60 | 2 < Q <sup>2</sup> < 3<br>0. <mark>6</mark> 0 < z < 0.65 | 2 < Q <sup>2</sup> < 3<br>0.65 < z < 0.70   | -0.2 Jan              |
| 0.6<br>0.4<br>0.2                                                                   | ••••••<br>••••••<br>••••••                | •••••• •<br>•••••• •                           | ••••••••<br>•••••••<br>•••••••            | • • • • • • • • • • • • • • • • • • •     | ••••••••••                                              | ••••••••••••••••••••••••••••••••••••••                   | ****** *                                                 |                                             | 70.2<br>-70.2         |
| ົບ1.2<br>ອີ້ງ<br>ຍິງ                                                                | 3 < Q <sup>2</sup> < 4<br>0.30 < z < 0.35 | 3 < Q <sup>2</sup> < 4<br>0.35 < z < 0.40      | 3 < Q <sup>2</sup> < 4<br>0.40 < z < 0.45 | 3 < Q <sup>2</sup> < 4<br>0.45 < z < 0.50 | 3 < Q <sup>2</sup> < 4<br>0.50 < z < 0.55               | 3 < Q <sup>2</sup> < 4<br>0.55 < z < 0.60                | 3 < Q <sup>2</sup> < 4<br>0.60 < z < 0.65                | 3 < Q <sup>2</sup> < 4<br>0.65 < z < 0.70   | -0.2 Jan              |
| 0.6<br>0.4<br>0.2                                                                   | •••••<br>• • • • •<br>• • • • •           | • • • • • • •<br>• • • • • •<br>• • • • • •    | I 343 • 3 I<br>• • • • • •<br>• • • • •   | II+II 3<br>•••••• •<br>•••••3• •          | 23•• x<br>••••• •                                       | I • • •                                                  | • • • • •                                                | I.                                          | 70.2                  |
| ()<br>)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()     | 4 < Q <sup>2</sup> < 5<br>0.30 < z < 0.35 | 4 < Q <sup>2</sup> < 5<br>0.35 < z < 0.40      | 4 < Q <sup>2</sup> < 5<br>0.40 < z < 0.45 | 4 < Q <sup>2</sup> < 5<br>0.45 < z < 0.50 | 4 < Q <sup>2</sup> < 5<br>0.50 < z < 0.55               | 4 < Q <sup>2</sup> < 5<br>0.55 < z < 0.60                | 4 < Q <sup>2</sup> < 5<br>0.60 < z < 0.65                | 4 < Q <sup>2</sup> < 5<br>0.65 < z < 0.70   | -0.2 ≩                |
| 0.6<br>0.4<br>0.2                                                                   | 11 ·<br>[][•] ·<br>]•••] '                |                                                | 1 · · · · · · ·                           | • •                                       | I .<br>I .                                              | ••••                                                     | ••••                                                     | •••                                         | 70.2                  |
| ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>(     | 5 < Q <sup>2</sup> < 6<br>0.30 < z < 0.35 | 5 < Q <sup>2</sup> < 6<br>0.35 < z < 0.40      | 5 < Q <sup>2</sup> < 6<br>0.40 < z < 0.45 | 5 < Q <sup>2</sup> < 6<br>0.45 < z < 0.50 | 5 < Q <sup>2</sup> < 6<br>0.50 < z < 0.55               | 5 < Q <sup>2</sup> < 6<br>0.55 < z < 0.60                | 5 < Q <sup>2</sup> < 6<br>0.60 < z < 0.65                | 5 < Q <sup>2</sup> < 6<br>0.65 < z < 0.70   | -0.2 temu             |
| 0.6<br>0.4<br>0.2                                                                   | ••••                                      | •••                                            | •• •                                      | •••                                       | ••                                                      | •••                                                      | •                                                        | •                                           | 70.2<br>70.4          |
| ତୀ.2<br>୦୦.8<br>୦୦.8                                                                | 6 < Q <sup>2</sup> < 8<br>0.30 < z < 0.35 | 6 < Q <sup>2</sup> < 8<br>0.35 < z < 0.40      | 6 < Q <sup>2</sup> < 8<br>0.40 < z < 0.45 | 6 < Q <sup>2</sup> < 8<br>0.45 < z < 0.50 | 6 < Q <sup>2</sup> < 8<br>0.50 < z < 0.55               | 6 < Q <sup>2</sup> < 8<br>0.55 < z < 0.60                | 6 < Q <sup>2</sup> < 8<br>0.60 < z < 0.65                | 6 < Q <sup>2</sup> < 8<br>0.65 < z < 0.70   | + <sup>#</sup> ∧ujemu |
| 0.4<br>0.2<br>0                                                                     | 0.1 0.2 0.3 0.4 0.5                       | 0.1 0.2 0.3 0.4 0.5                            | 0.1 0.2 0.3 0.4 0.5                       | 0.1 0.2 0.3 0.4 0.5                       | 0.1 0.2 0.3 0.4 0.5                                     | 0.1 0.2 0.3 0.4 0.5                                      | 6.1 0.2 0.3 0.4 0.4                                      | 5 0.1 0.2 0.3 0.4 0.5                       | 70.2<br>70.4          |

Mostly limited to low  $P_{T_{j}}$  Ultimate 4-D precision for valence quark TMDs. Acceptance at low and high z to study target fragmentation and exclusive channels.

# Bright Future for TMDs Golden channel of Electron-Ion Collider



- Sea quark TMDs
- Gluon Sivers? What happened at very low x?
   SIDIS vs. dipole model
- Test Collins-Soper Evolution for high vs. low Q<sup>2</sup> at large x.

### **Also Factorization Test of SIDIS**

- Factorization test in Collinear picture at exact kinematics from hydrogen, deuterium and <sup>3</sup>He
- Proton, Deuteron, and <sup>3</sup>He are
   Essential for
   possible nuclear
   correction.





#### **Future Possibilities**

- Transverse Proton Target on TSSA?
- Nuclear Target -> Parton
   Propagation/Hadronization mechanism in the
   cold nuclear medium
- PVRES in both inclusive and SIDIS channel
  - MAID model in the weak sector?
  - Potential importance to neutrino community.
- Other ideas?

#### Summary

- SIDIS is a powerful tool to study Parton dynamics in the amplitude level (TMDs)
  - Spin-OAM correlation, flavor dependence etc.
- SoLID is an ideal device to study SIDIS
  - High luminosity, large acceptance and full azimuthal coverage
  - Will provide ultimate precision (4-D) of SSA, at high-x (valence), low Q<sup>2</sup> region, which is crucial input to global analysis.
- Integrated Effort in SoLID R&D with PVDIS!