SoLID: Transversity Light Gas Cerenkov Study

Simona Malace

Duke University

Collaborators: Haiyan Gao (Duke), Zein-Eddine Meziani (Temple), Yi Qiang (JLab), Xin Qian (CalTech)

SoLID Collaboration Meeting, January 28-29, 2010

E12-10-006: Physics Goal

> Access TMDs through Semi-Inclusive DIS

 S_L , S_T : Target Polarization; λ_e : Beam Polarization

The proposed measurement in this proposal will access these terms.

from PAC35 talk

E12-10-006: Kinematics

> Coincidence experiment in Hall A with SoLID: ($e^{-}, \pi^{+,-}$)

- Q^2 coverage: (1, 8) GeV²
- W coverage: (2.3, 4) GeV
- x coverage: (0.05, 0.65)
- z coverage: (0.3, 0.7)

- p_T coverage: (0, 1.6) GeV²
- \bullet 2π coverage in the azimuthal angle

E12-10-006: SoLID Detector

> Coincidence experiment in Hall A with SoLID: ($e^{-}, \pi^{+,-}$)

E12-10-006: SoLID Detector

> Coincidence experiment in Hall A with SoLID: ($e^{-}, \pi^{+,-}$)

Large angle detectors: e⁻

- GEMs (4 layers)
- Shashlyk-type Calorimeter
- > Forward angle detectors: $e^{-}, \pi^{+,-}$
 - GEMs (5 layers): tracking
 - Light Gas Cerenkov:
 - e identification mainly
- Scintillator: used to form hadron trigger
- Heavy Gas Cerenkov: $\pi^{+,-}$ identification
- MRPC: timing info to form coincidence
- Calorimeter: e^{-}, π separation at high momentum

Light Gas Cerenkov

- > Mainly used for electron identification at forward angle
 - The Light Gas Cerenkov: filled with $CO_2 @ 1 \text{ atm}$, n = 1.00045

Light Gas Cerenkov: Simulation

Developed by Yi Qiang in Geant4: a viable optical system with optimal focusing for the polar angle and momentum range required by E12-10-006

Light Gas Cerenkov: Collection Efficiency

> Of the photons that reached the first mirror, how many reached the observer (Winston cone + PMTs) assuming 100% mirror reflectivity?

Light Gas Cerenkov: Collection Efficiency

Example

All photons are collected by the observer at momentum = 4 GeV

Some photons miss the observer and some photons miss the second mirror at momentum = 2 GeV

Light Gas Cerenkov: Collection Efficiency

 $_{\odot}$ Or ... the mirrors and the observer can be positioned to optimize the efficiency at low momentum \rightarrow slightly reduced efficiency at high momentum

> Need to implement realistic magnetic field distribution: re-check the collection efficiency at low momentum

Light Gas Cerenkov: More Realistic Simulation

Magnetic field:

- \rightarrow Current: uniform magnetic field in the z direction (1.5 T)
- \rightarrow Realistic: once we know what magnet we will use...
- Winston Cones simulation:
 - \rightarrow Current: the observer simulated as 10" diameter spheres
- → Realistic: need to simulate the Winston cones and their orientation to maximize light collection

Tank simulation:

→ Current: no material for detector's walls and window (only a volume of CO₂ with optical properties for boundary assumed)
→ Realistic: introduce materials for window and walls

Take into account mirror reflectivity

Implement this simulation in GEMC

Heavy Gas Cerenkov

> Requirements for E12-10-006: separate pions from kaons and protons at forward angles, 6.6-12 deg

> The Heavy Gas Cerenkov: filled with C_4F_{10} @ 1.5 atm, n = 1.0021

> We can separate pions with momentum = (2.2, 7.6) GeV from kaons and protons

No simulation yet...

> Open question: use a similar optical design as for the **light gas Cerenkov**?

Summary

Requirements for E12-10-006: need both light and heavy gas Cerenkov detectors to separate electrons from pions and pions from kaons and protons

> Light gas Cerenkov:

• 3-mirrors optical system in place and working

To do:

- implement a realistic field map and re-check the collection efficiency
- simulate the Winston cones
- implement the simulation in GEMC

> Heavy gas Cerenkov:

• no simulation yet... Use similar optical system as for the light gas Cerenkov?

Backup Slides

Open Issues

1) <u>Adaptability of simulation (3-mirrors</u> <u>system) for use in PVDIS</u>

- PVDIS: the polar angular coverage is very different than for E12-10-006
- Current Cerenkov design (placement of first mirror) is optimized for a central ray with a polar angle of 9.3 deg