Møller Polarimetry for PV Experiments at 12 GeV

E.Chudakov¹

¹JLab

SoLID Meeting

E.Chudakov

Jan 29, 2011, SoLID

Møller Polarimetry

- 2 Ferromagnetic Targets
- 3 Møller with Atomic Hydrogen Target

4 Conclusion

- Perromagnetic Targets
 - 3 Møller with Atomic Hydrogen Target

4 Conclusion

5 Appendix

- Perromagnetic Targets
- Møller with Atomic Hydrogen Target

4 Conclusion

5 Appendix

- Perromagnetic Targets
- Møller with Atomic Hydrogen Target

4 Conclusion

5 Appendix

- Perromagnetic Targets
- 3 Møller with Atomic Hydrogen Target

4 Conclusion

Installation in Hall A

Installation in Hall A

Error Budget of Møller and SoLID Experiments

Møller

SoLID

Source of error	% error
Q^2 absolute value	0.5
beam polarization	0.4
beam second order	0.4
inelastic <i>ep</i>	0.4
elastic <i>ep</i>	0.3
other	0.5
total	1.0

Source of error	% error	
beam polarization	0.4	
radiative corrections	0.3	
Q ² absolute value	0.2	
statistics	0.3	
total	0.6	

0.4% - can it be done?

Møller Polarimetry

Error Budget of Møller and SoLID Experiments

Møller

SoLID

Source of error	% error
Q^2 absolute value	0.5
beam polarization	0.4
beam second order	0.4
inelastic <i>ep</i>	0.4
elastic <i>ep</i>	0.3
other	0.5
total	1.0

Source of error	% error	
beam polarization	0.4	
radiative corrections	0.3	
Q ² absolute value	0.2	
statistics	0.3	
total	0.6	

0.4% - can it be done?

Electron Polarimetry for PV at JLab: Features

- Energy range $E_{beam} = 6.6 11 \text{ GeV}$
- Current range $\mathcal{I}_{beam} = 40 90 \ \mu A$

Additional features to consider

- Time needed to achieve \sim 0.4% statistical error
- Difficult to evaluate systematic errors from:
 - Polarimetry uses a different beam regime than the experiment (energy, current, location)
 - Intermittent (invasive?) measurements in contrast with the continuous one

Electron Polarimetry for PV at JLab: Features

- Energy range $E_{beam} = 6.6 11 \text{ GeV}$
- Current range $\mathcal{I}_{beam} = 40 90 \ \mu A$

Additional features to consider

- Time needed to achieve $\sim 0.4\%$ statistical error
- Difficult to evaluate systematic errors from:
 - Polarimetry uses a different beam regime than the experiment (energy, current, location)
 - Intermittent (invasive?) measurements in contrast with the continuous one

Møller Polarimetry

- Rad. corrections to Born < 0.3%
- Detecting the e^- at $heta_{CM} \sim 90^\circ$
- $\frac{dA}{d\theta_{CM}}|_{90^\circ} \sim 0$ good systematics
- Beam energy independent
- Coincidence no background
- Ferromagnetic target $\mathcal{P}_T \sim 8\%$
 - Heating $\frac{d\mathcal{P}}{dT} \sim 1\%/100^{\circ}\text{C}$ $\langle I_B \rangle < 3 \ \mu A$
 - Levchuk effect (atomic e⁻)
 - Low $\mathcal{P}_T \Rightarrow$ dead time
 - Syst. error σ(P_T) ~ 2% (0.5%?)

 $A(E) = -rac{7}{9}$ $\sigma_{lab} \sim 180 rac{mb}{ster}$

Møller Polarimetry - Ferromagnetic Targets

Polarized electron targets: magnetized ferromagnetic foils

- Iron: polarized *d*-shell (6 positions occupied out of 10)
- \mathcal{P}_e not calculable: derived from measured magnetization
- Spin-orbital corrections ($\sim 5\%$) measured in bulk material
- Magnetizing field is along the beam

Field 20 mT, foil at $\sim 20^\circ$

- Magnetization along the foil
- Magnetization can be measured
- A few % from saturation
- Sensitive to annealing, history
- Polarization accuracy $\sim 2-3\%$

Field 3-4 T, foil at \sim 90°

- Magnetization perp. to the foil
- Magnetization from world data
- Foil saturated
- Polarization is robust.
- Polarization accuracy $\sim 0.5\%$

Attempts to use iron in 50-100 μ A beam

- Hall C: a mesh target, a wire target, a kicker magnet and a foil band
- Hall A: a beam duty cycle the "tune" beam with bunch suppression.

Not successful so far

Møller Polarimeter with Saturated Iron foil (Hall C)

JLab, Hall C, M. Hauger et al. NIM A 462, 382 (2001), talk on PAVI09 by S.Page

- External $B_Z \sim 3-4 T$
- Target foils 1-10 μm, perp. to beam
- *P_t* not measured

source	$\sigma(A)/A$
optics, geometry	0.20%
target	0.28%
Levchuk effect	0.30%
total at 3 μ A	0.46%
\Rightarrow 100 μ A	?

Tests at high beam current

- Half-moon shape foil
- Kicker magnet

A 1 μ m thick half-foil: mech. problems:

- Foil unstable: holder design
- Thicker foil high rate
- At 20µA accidentals/real≈0.4

E.Chudakov

Jan 29, 2011, SoLID

Møller Polarimetry

Hall A Møller polarimeter with high field iron target

- Minimal Levchuk
- $\sigma_{stat} = 1\%$ in \sim 2–3 min
- *B_Z* ~ 3 − 4 mT field
- Foil at 0° to field
- Foils 1–10µm
- Beam <3µA
- Systematics $\sim 1\%$

Hall A high field iron target: lessons learned

Used for PREX (${\sim}1~\text{GeV})$ and DVCS (${\sim}5~\text{GeV})$

- Coils strong beam steering
 - No remote motion/steering of the magnet
 - Elaborate attempts to align the magnet with the help of the survey group little success
 - Can the coils move inside the cryo-vessel?
- Optimal Q1 current is about 15% off the mark at 1 GeV No explanation so far ⇒ systematic error on analyzing power
- Variation between targets ${\sim}0.5\text{-}1.0\%$ material or the field angle? (3° \Rightarrow 1% at 3 T, 0.3% at 4 T)
- No full saturation visible (~1% level) at 3-4 T ⇐ Levchuk effect depends on the field

Møller Systematic Errors

Variable	Hall C	Hall A		
		Low B Fe	High B Fe	
Material Polarization	0.25%	0.30%	0.25%	
Target variation	0.00%	1.50%	0.50%	
Target angle	0.00%	0.50%	0.00%	
Analyzing power	0.24%	0.30%	0.30%	
Levchuk effect	0.30%	0.30%	0.30%	
Target temperature	0.05%	0.00%	0.02%	
Dead time	?	0.30%	0.30%	
Background	?	0.30%	0.30%	
Others	0.10%	0.30%	0.30%	
Beam extrapolation	?	larger	?	
Total	0.47%	1.75%	\sim 0.90%	

Possible Breakthrough in Accuracy

Møller polarimetry with 100% polarized atomic hydrogen gas, stored in a ultra-cold magnetic trap.

E.Chudakov and V.Luppov IEEE Trans. on Nucl. Sc., 51, 1533 (2004)

http://www.jlab.org/~gen/hyd/loi_3.pdf

Advantages:

- 100% electron polarization
 - · very small error on polarization
 - sufficient rates $\sim~\times$ 0.005 no dead time
 - false asymmetries reduced $\sim~\times$ 0.1
- Hydrogen gas target
 - no Levchuk effect
 - low single arm BG from rad. Mott (×0.1 of the BG from Fe)
 - high beam currents allowed: continuous measurement

Operation:

- density: $\sim 6 \cdot 10^{16}$ atoms/cm²
- Stat. error at 50 μ A: 1% in \sim 10 min

E.Chudakov

Møller Polarimetry

Møller Systematic Errors

Proposed: 100%-polarized atomic hydrogen target ($\sim 3 \cdot 10^{16}$ atoms/cm²).

Variable	Hall C	Hall A			
		Low B Fe	High B Fe	High B ¹ H	
Material Polarization	0.25%	0.30%	0.25%	0.01%	
Target variation	0.00%	1.50%	0.50%	0.00%	
Target angle	0.00%	0.50%	0.00%	0.00%	
Analyzing power	0.24%	0.30%	0.30%	0.10%	
Levchuk effect	0.30%	0.30%	0.30%	0.00%	
Target temperature	0.05%	0.00%	0.02%	0.00%	
Dead time	?	0.30%	0.30%	0.10%	
Background	?	0.30%	0.30%	0.10%	
Others	0.10%	0.30%	0.30%	0.30%	
Beam extrapolation	?	larger	?	0.00%	
Total	0.47%	1.75%	\sim 0.90%	0.35%	

Storage Cell

First: 1980 (I.Silvera,J.Walraven) \vec{p} jet (Michigan) Never put in high power beam

- 4 states, \mathcal{P}_e : $|a\rangle$, $|b\rangle$ =-1 $|c\rangle$, $|d\rangle$ =+1
- $-\vec{\nabla}(\vec{\mu_HB})$ force in the field gradient
 - pulls $|a\rangle$, $|b\rangle$ into the strong field
 - repels $|c\rangle$, $|d\rangle$ out of the field
 - $\mathcal{P}_e = 1 \delta, \, \delta \sim 10^{-5}$
- H+H→H₂ recombination (+4.5 eV) high rate at low T
 - parallel electron spins: suppressed
 - gas: 2-body kinematic suppression
 - gas: 3-body density suppression
 - surface: strong unless coated ~50 nm of superfluid ⁴He
- Density $3 \cdot 10^{15} 3 \cdot 10^{17} \text{ cm}^{-3}$.
- Gas lifetime > 1 h.

Contaminations and Depolarization of the Target Gas

Ideally, the trapped gas polarization is nearly 100% ($\sim 10^{-5}$ contamination). Good understanding of the gas properties (without beam).

Contamination and Depolarization No Beam

Gas Properties

- Atom velocity \approx 80 m/s
- Atomic collisions \approx 1.4 10⁵ s⁻¹
- Mean free path $\lambda \approx$ 0.6 mm
- Wall collision time $t_R \approx 2 \text{ ms}$
- Escape (10cm drift) $t_{es} \approx 1.4 \text{ s}$ CEBAF Beam
- Bunch length σ =0.5 ps
- Repetition rate 497 MHz
- \circ Beam spot diameter \sim 0.2 mm

- Hydrogen molecules $\sim 10^{-5}$
- Upper states $|{\it c}
 angle$ and $|{\it d}
 angle < 10^{-5}$
- Excited states < 10⁻⁵
- Helium and residual gas <0.1%
 measurable with the beam

100 $\mu \rm A \ Beam$

- Depolarization by beam $RF < 2 \cdot 10^{-4}$
- Ion, electron contamination $< 10^{-5}$
- Excited states $< 10^{-5}$
- Ionization heating $< 10^{-10}$

Expected depolarization $< 2 \cdot 10^{-4}$

R&D and initial design - before major commitments

• Proof of principle

- How to make electrodes in the 0.3 K copper cell with He film to provide E ${\sim}1$ V/cm?
- Revisiting some calculations: new calculations/data on atomic cross sections at 0.3 K?
- Adapting to Hall A polarimetry
 - How to make thermal shielding from the beamline?
 - Cooling: He consumption do we have enough power?
 - How to align the magnet and avoid the beam steering?
 - How to detect trajectories before Q1 (needed to identify the interaction position - essential to identify the residual gas contribution)
 - Optics at 12 GeV
 - What space along the beam is needed? Do we have enough space on the beamline?

Conclusion

New PV experiments require a ${\sim}0.4\%$ polarimetry. Two options for the Møller polarimetry:

Iron foil in strong field

- Not continuous
- Invasive
- Certain: 0.8%
- Potential: 0.5% with R&D
 - manpower \sim 4 FTE*Y
 - low material cost (\sim 50k)

Atomic hydrogen

- Continuous
- Not invasive
- Novel instrument
- Potential: 0.25%!
- Possible steps:
 - R&D cell with electrodes 1 FTE*Y, 50k
- Interest expressed:
 - UVA (Don Crabb)
 - Mainz (Frank Maas)

Hall A Møller Polarimeter: high field iron target

Motivated by PREX requirements:

- High field magnetization (Hall C target clone)
- High instantaneous beam current: reduce heating by introducing a beam duty cycle < 5%
 - Beam rep. rate 500 MHz/4 $\mathcal{F}_{laser} \cdot (n+1) = \mathcal{F}_{RF} \cdot n$ "beat"
 - "Tune beam": 4 ms pulses at ${\sim}60~\text{Hz}$
 - Instantaneous counting rate at 50µA will be ×3 higher
 - More invasive than a kicker scheme
- Electronics upgrade to digest higher rates

Appendix

Target heating with the real raster

Bunch suppression

Options (from the draft of a paper by M.Poelker et al)

- G0: laser running at 499/16MHz too long to install
- For regular bunch charges: laser at *F*_{laser} < *F*_{RF} bunch suppression on the chopper.
 Beat frequency condition (*F*_{RF} = 499*MHz*): *F*_{laser} · (*n* + 1) = *F*_{RF} · *n*, *n* = 3, 4, 7, 15, 31, ... "magic" numbers

regular $\mathcal{F}_{laser} = \mathcal{F}_{BF}$

E.Chudakov Jan 29, 2011, SoLID

n = 15

continuous

Appendix

Beat frequency mode - leak through

Pulses overlap

- τ_{pulse} ~200 ps @50 μ A
- τ_{pulse} grows with *I*_{beam} (electro-repulsion)
- Fully open slit 110 ps
- No leak: $\Delta \tau >$ 160 ps

Optimization

- n=15 same slit $\Delta \tau =$ 133 ps, contamination \sim 5% bad
- n=7 same slit $\Delta \tau = 285$ ps, no contamination; other slit $\Delta \tau = 95$ ps leak $\sim 30\%$ invasive for other halls
- n=4 other slit $\Delta \tau = 166$ ps non-invasive?

Appendix

Hydrogen Atom in Magnetic Field

 $H_1: \vec{\mu} \approx \vec{\mu_e};$ $H_2:$ opposite electron spins Consider H_1 in B = 7 T at T = 300 mK At thermodynamical equilibrium: $n_+/n_- = exp(-2\mu B/kT) \approx 10^{-14}$

where tan $2\theta \approx 0.05/B(T)$, at 7 T sin $\theta \approx 0.0035$ Mixture ~53% of $|a\rangle$ and ~47% of $|b\rangle$: $\mathcal{P}_{e} \sim 1 - \delta$, $\delta \sim 10^{-5}$, $\mathcal{P}_{p} \sim -0.06$ (recombination $\Rightarrow \sim 80\%$)

Dynamic Equilibrium and Proton Polarization

Proton polarization builds up, because of recombination of states with opposite electron spins:

$$|a\rangle = |\downarrow \uparrow \rangle \alpha + |\uparrow \downarrow \rangle \beta$$
 and

 $|b\rangle = |\downarrow \pm \rangle$ As a result, $|a\rangle$ dies out and only $|b\rangle = \downarrow \pm$ is left!

 $\mathcal{P} \to 0.8$

Contamination and Depolarization of the Target Gas

100 µA CEBAF beam:

Beam RF influence

- $|a\rangle \rightarrow |d\rangle$ and $|b\rangle \rightarrow |c\rangle \sim 200 \text{ GHz}$
- RF spectrum: flat at <300 GHz

- $\sim 10^{-4} \text{ s}^{-1}$ conversions (all atoms)
- $\sim 6\% \text{ s}^{-1}$ conversions (beam area)
- Diffusion: contamination $\sim 1.5 \cdot 10^{-4}$ in the beam area
- Solenoid tune to avoid resonances

Gas Ionization

- 10⁻⁵ s⁻¹ of all atoms
- 20% s⁻¹ in the beam area
- Problems:
 - No transverse diffusion
 - Recombination suppressed Contamination $\sim 40\%$ in beam
 - 0
- Solution: electric field $\sim 1 \text{ V/cm}$
 - Drift $v = \vec{E} \times \vec{B}/B^2 \sim 12$ m/s
 - Cleaning time $\sim 20~\mu s$ Contamination $< 10^{-5}$

 - lons, electrons: same direction
 - Beam $E_r(160\mu m) \approx 0.2 \text{ V/cm}$ 0

E.Chudakov

Summary on Atomic Hydrogen for Møller Polarimetry

Potential for Polarimetry

- Systematic accuracy of < 0.3%
- Continuous measurements
- Tools for systematic studies: changing the electrical field (ionization) changing the magnetic field (RF depolarization)

Problems and Questions

- Electrodes in the cell: R&D is needed
- Residual gas 0.1% accurate subtraction Coordinate detectors: the interaction point?
- Atomic cross section (mean free path...) needs verification
- Cost and complexity

Potential Improvement of Systematic Accuracy

Fe at 3T: potential improvement (quite optimistic):

- Better understanding of magnetization in thin foils (find experts)
- More extensive MC and beam studies
- Measurements: 0.1% stat ⇒ *3-5h beamtime* ⇒ beam stability?

Variable	Hall C	Hall A		
		Fe at 3T		H ₁ gas
Target polarization	0.25%	0.50%	0.25%	0.01%
Target angle	0.00%	0.00%	0.00%	0.00%
Analyzing power	0.24%	0.30%	0.20%	0.15%
Levchuk effect	0.30%	0.20%	0.20%	0.00%
Target temperature	0.05%	0.02%	0.02%	0.00%
Dead time	-	0.30%	0.15%	0.10%
Background	-	0.30%	0.15%	0.10%
Others	0.10%	0.30%	0.15%	0.15%
Beam extrapolation	?	0.15%	0.15%	0.00%
Total	0.47%	0.82%	0.48%	0.25%

