

SoLID Magnet Options

Paul E. Reimer
25 March 2011
Physics Division
Argonne National Laboratory

Magnet Principles

- Must be affordable
 - By this, I mean that it already exists
 - Hopefully comes with useable material for the barrel and upstream yoke
- Large enough to give reasonable acceptance
 - For both PV- and SI- DIS experiments
 - 1.5m diameter seems to work
 - Smaller diameters is being investigated
- Additional current density at coil ends is desirable.

Flux Return Design Constraints

- Redesign downstream Flux return to
 balance forces on the coil
- Low field detector area
 - How large does this need to be? –
 - Min. and Max. acceptance angle from SIand PV-DIS target areas
 - What is max field?
- SIDIS Large angle acceptance

Paul E. Reimer, SoLID Collaboration Mtg, Magnets Options

25 March 2011

Magnets under consideration or "The usual suspects"

Babar

ZEUS

CDF

- Glue-X
- New Magnet?

BaBar

- Original SoLID MC used BaBar Magnet
- Baffles are designed assuming BaBar field
- Current density 2x greater in end ¼ than in middle ½.
- Probably not available
 - Will likely go to Italy

CLEO field simulation

- Magnet simulation data from CLEO TOSCA 2D input file
 - Some inconsistencies
 - documented in comments
- Current density 1.05x greater in end ¼ than in middle ½.

CLEO field simulation

- Magnet simulation data from CLEO TOSCA 2D input file
 - Some inconsistencies
 - documented in comments
- Current density 1.05x greater in end ¼ than in middle ½.

- Poisson simulation gives reasonable field but the Yoke still needs tuning for
 - better acceptance
 - Force balance on coil (should be achievable)
 - SIDIS wide angle acceptance
- Magnet not in use, but
 - "trapped" by ring
 - Owned by Cornel, not DOE

Fig. 1. A perspective view of the ZEUS detector with all its components.

ZEUS Magnet

Fig. 2. The ZEUS detector coil system around one yoke half.

A

ZEUS Magnet

- Much smaller magnet
 - Higher field
 - What is the **balance between higher field and smaller size**?
 - SIDIS wide angle acceptance
- Magnet not in use, likely available, but
 - Not sure who actually owns the magnet

ZEUS Magnet

C:\Users\reimer\Documents\JLab\12_CeV\SoLID

- Much smaller magnet
 - Higher field
 - What is the **balance between higher field and smaller size**?
 - SIDIS wide angle acceptance
- Magnet not in use, likely available, but
 - Not sure who actually owns the magnet

Fig. 5. A cut-away view through the forward half of CDF. The detector is forward-backward symmetric about the interaction point

CDF

- CDF Magnet has a slightly longer bore than BaBar (move target downstream in magnet)
- Flux return not applicable to SoLID
- After Tevatron run ends in October
 - There are some proposals at Fermilab which are considering using this magnet or the CLEO Magnet

Magnet Comparison

	BaBar	CLEO	ZEUS	CDF	Glue-X	Other
Cryostat Inner Radius	150 cm	150 cm	86 cm	150 cm		peau
Length	345 cm	350cm	245cm	500 cm		Je
Central Field	1.49T	1.5T	1.8T	1.47T		Wer
Yoke Aval?	Yes	Yes	No	No		
Cool Icon	Yes	Yes	Yes	No		Ve
Variation in Current density with z?	Current Density in central 50% is ½ that in end 25%	Current Density in central 50% is 1/1.04 that in end 25%	Current density 25% more current at ends	No	Yes	Whatever
Available	Probably Not??	Probably	Probably	Probably	Perhaps	\$5M??

Roadmap

- 1. Define geometry
 - Mostly complete, but need input on how large detector packages need to be for SIDIS
 - No significant effect on other steps
- 2. Simulate fields (done)
- 3. Optimize fields
- 4. Design Baffles (PVDIS only)
- 5. Check acceptance
- 6. Iterate

Who really does this work?

Monte Carlo Group

Simona Malace, Juliette Mammai, Seamus Riordan, Lorenzo Zana, Zhiwen Zhao

Based on work started by Eugene Chudakov and Xin Qian

