EC Forward Angle

Zhiwen Zhao UVa 2011/03/25

EC forward angle

Requirement

- PVDIS rate 2000GeV/cm2/s, 60krad/year
- SIDIS rate 500GeV/cm2/s, 15krad/year
- Resultion $\frac{\sigma E}{E} = \frac{3\%}{\sqrt{E}} \oplus 2\%$ $\frac{\sigma E}{E} = \frac{10\%}{\sqrt{E}} \oplus 1\%$
- Pion rejection 200:1 at E > 3.5 GeV, 100:1 at E > 1.0 GeV
- Fast time response, provide a trigger
- Good position resolution for tracking

The Menu

- Lead glass (can't hold such radiation)
- Shashlyk
- SciFI

BaBar field

5

CDF field

Fanda Shashlyk prototype module parameters

9 modules assembled in matrix 3x3

- 380 layers of 0.3-mm lead and 1.5-mm scintillator, total length 680 mm
- Transverse size 110x110 mm²
- Effective Moliere radius: $R_M = 59 \text{ mm}$
- Effective radiation length: $X_0=34$ mm
- Total radiation length: 20X₀
- Light collection: 144 (12×12) fibers BCF-91A (Ø1.2 mm)
- PMT Hamamtsu R5800 as photodetectors

Shashlyk modules production

Shashlyk prototype pictures

3x3 matrix of shashlyk modules and PMT attached to the modules

Minimum ionizing particle peak

 $\sigma_{\rm E}/{\rm E} = a/{\rm E} \oplus b/\sqrt{{\rm E} \oplus {\rm c}} [\%], {\rm E in GeV}$

Experiment data fit:	MC data fit:
$a = 3.5 \pm 0.3$	a = 0.0
$b = 2.8 \pm 0.2$	$b = 3.0 \pm 0.3$
$c = 1.3 \pm 0.04$	$c = 1.1 \pm 0.7$

Good agreement with MC without noise term.

Good agreement with previous studies of similar sampling modules at lower energies (2.9%/ √E at 220-370 MeV: *Test beam study of the KOPIO shashlyk calorimeter prototype*, G.Atoian, S.Dhawan,V.Issakov et al. *CALOR-2004 Proceedings*)

$\sigma_x = a/\sqrt{E \oplus b}$ [mm], E in GeV

Experiment data fit:	MC data fit:
$a = 17.6 \pm 0.9$	$a = 14.2 \pm 0.6$
$b = 4.6 \pm 0.9$	$b = 5.5 \pm 0.9$

Worst case – resolution at the module center. Resolution near the module edge is 3 times better

Calorimeter in Solenoid Flux Return

- How to get the light from the calorimeter to a photosensitive detector?
 - APD's
 - Light Guides out of field region
 - Use flux return for calorimeter

Calorimeter in Solenoid Flux Return

Open Questions:

- What does magnetic field do the shower?
 - My guess is that charged particles in the EM shower will curl up causing the shower to become shorter and wider
- How does magnetic field affect resolution in Energy and in space? Is this a strong function of field strength or direction?
- What resolution do we need? [Pb:SciFi at ~1:1 gives 4.5%/sqrt(E)]
- Is Iron dense enough?
- How does the fiber affect the Magnetic flux return?
 - My guess is that we use and "effective" μ which is about half that of Fe.
- Require detailed MC; Have contacted D. Hertzog about simulations.
- How do we cost this?
 - D Hertzog—driving cost is amount of fiber—Fe less dense than Pb thus need more fiber.

Mixture of radiation material and scintillator fiber(glue)

g-2 prototype test run

Data

Simulation

Test module simulation

- 90cm(height)x32cm(width)x60cm(depth),
- material:(fiber+flue)=1:1,
- fiber along Z, layer along Y, optional 2T field along Y

W/SciFi

Fe/SciFi

Test module simulation hit distribution (No Field)

Test module simulation shower position and size

W_YesField (Empty) Fe_NoField (Solid)

21

Test module simulation

Test module simulation pion response

W/SciFi

Fe/SciFi

Test module simulation add 4cm W preshower

electron eff 95%

pion rejection 50:1

HallD Pb/SciFi BCAL optimazed for photon detection

Summary

- Shashlyk need more study.
- Fe/SciFi seems a promising candidate.
 Still need more study, particular emerging side about how to implement it into endcup.
- Some expertise can be used within Jlab.