### **SoLID** simulation

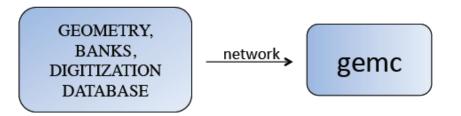
# Zhiwen Zhao Uva SoLID Collaboration Meeting 2011/6/2

### GEMC

### written by Maurizio Ungaro, used for CLAS12

### GEMC (GEant4 MonteCarlo)

gemc is a C++ program that simulates particles through matter using the geant4 libraries.




> Detectors Information are stored at the JLAB mysql server. Configuration changes are immediately available to the users without need to recompile the code

> Hit Process Factory: associate detectors with external digitization routines at run time

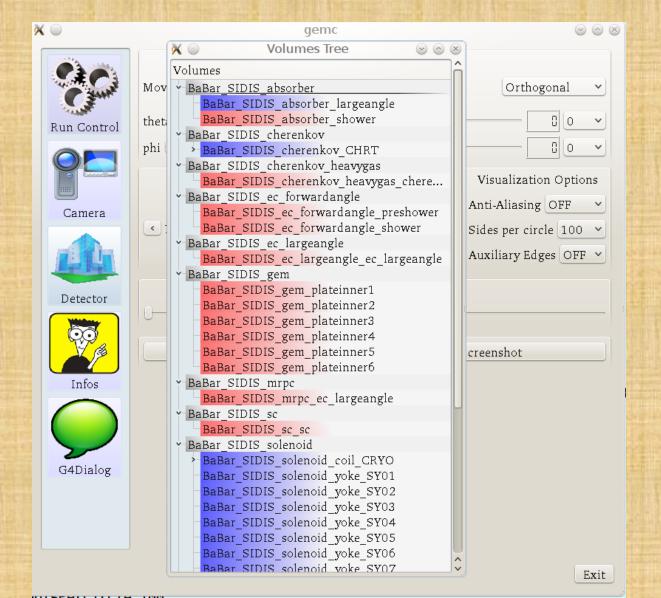
> Developers interact with database, do not need to know C++ or Geant4 to build detector and run the simulation

2

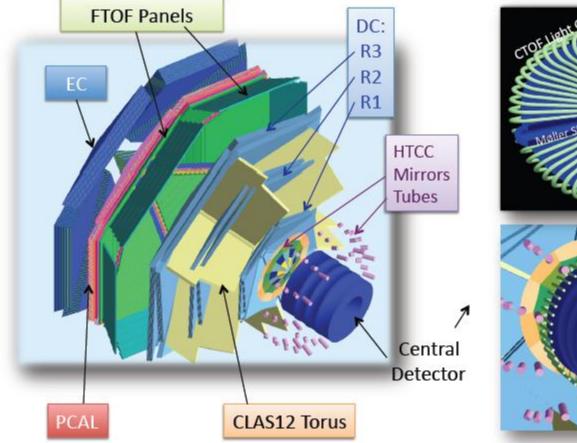


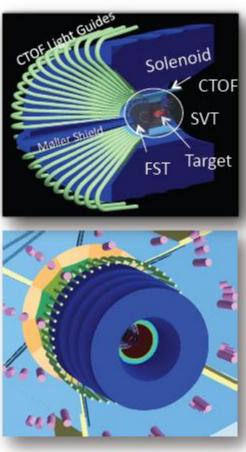
# GUI (Run control)

X


Command Line Options

Various GEMC Options:


- Control
- ✦ General
- ✦ Generator
- ✦ Luminosity
- Mysql
- Output
- Physics
- ✦ Verbosity

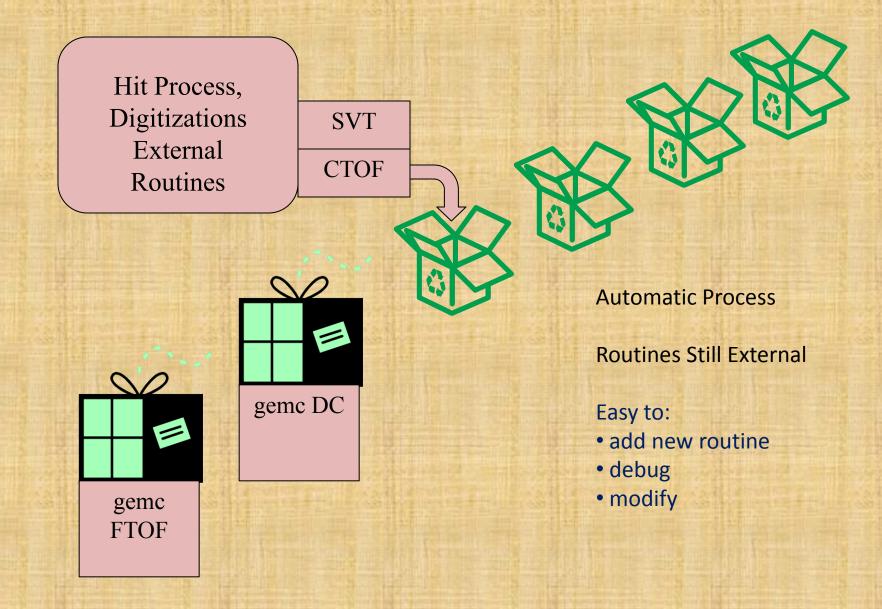

| 0                          | gemc 💿 💿                             |                 |               |                |  |  |  |
|----------------------------|--------------------------------------|-----------------|---------------|----------------|--|--|--|
|                            | Primary Particle                     |                 |               |                |  |  |  |
| C Salar                    | Particle Type:                       |                 | -             | ~              |  |  |  |
| Run Control                | p:                                   |                 | Dispersion    |                |  |  |  |
|                            | theta:                               |                 |               |                |  |  |  |
| Camera                     | Be                                   | am Values       | Vertex Values |                |  |  |  |
|                            | p:                                   | 5500 ± 5500 MeV | (x,y,z):      | (0, 0, 100) mm |  |  |  |
| Le La                      | theta:                               | 28.5 ± 6.5 deg  | radius:       | 5 mm           |  |  |  |
| Detector                   | phi:                                 | 0 ± 180 deg     | delta z:      | 200 mm         |  |  |  |
|                            | Vertex                               |                 |               |                |  |  |  |
| Infos                      | Value                                |                 | Dispersion    |                |  |  |  |
|                            | vx:                                  |                 | radius: -0    |                |  |  |  |
|                            | vy:                                  |                 | dvz:          |                |  |  |  |
| $\mathbf{\mathbf{\nabla}}$ | vz:                                  | U               |               |                |  |  |  |
| G4Dialog                   | Number of Events                     |                 |               |                |  |  |  |
|                            | Set N: 1 V X 1 V Number of Events: 1 |                 |               |                |  |  |  |
|                            | Beam On                              |                 |               |                |  |  |  |
|                            |                                      |                 |               | Exit           |  |  |  |
| U                          | _                                    |                 |               |                |  |  |  |

### **GUI** (Detector)



### **Current Status for CLAS12**






### How To: new detector, hits

| <pre>\$detector{"pos"}</pre>         | = "10*cm 20*cm 305*mm";                             |
|--------------------------------------|-----------------------------------------------------|
| <pre>\$detector{"rotation"}</pre>    | = "90*deg 25*deg 0*deg";                            |
| <pre>\$detector{"color"}</pre>       | = "66bbff";                                         |
| <pre>\$detector{"type"}</pre>        | = "Trd";                                            |
| <pre>\$detector{"dimensions"}</pre>  | = "1*cm 2*cm 3*cm 4*cm 5*cm";                       |
| <pre>\$detector{"material"}</pre>    | = "Scintillator";                                   |
| <pre>\$detector{"mfield"}</pre>      | = "no";                                             |
| <pre>\$detector{"ncopy"}</pre>       | = 12;                                               |
| <pre>\$detector{"pMany"}</pre>       | = 1; 16 <sup>th</sup> : Bank                        |
| <pre>\$detector{"exist"}</pre>       | = 1;                                                |
| <pre>\$detector{"visible"}</pre>     | = 1;                                                |
| <pre>\$detector{"style"}</pre>       | = 1;                                                |
| <pre>\$detector{"sensitivity"}</pre> | = "CTOF"; / 17 <sup>th</sup> : Digitization Routine |
| <pre>\$detector{"hit_type"}</pre>    | = "CTOF";                                           |
| <pre>\$detector{"identifiers"}</pre> | = "paddle manual 2";                                |

In general, 1 bank  $\leftarrow \rightarrow$  1 digitization routine... but not necessary

# **Factory Method for Hit Processes**



# Digitization

#### Available For every G4 step

#### Hit Process Example

| • Hit Position            | > |
|---------------------------|---|
| Volume Local Hit Position | > |
| Deposited energy          | > |
| • Time of the hit         | > |
| Momentum of the Track     | > |
| Energy of the track       | > |
| Primary Vertex of track   | > |
| Particle ID               | > |
| • Identifier              | > |
| Mother Particle ID        |   |

Mother Vertex

| Average (x,y,z)         |
|-------------------------|
| Average (lx, ly, lz)    |
| Total E                 |
| Average t               |
| Average p (final p)     |
| Energy                  |
| Primary Vertex of track |
| Particle ID             |
| Strip, Laver, Sector    |

### **Event Generation**

 Particle gun built in, two luminosity beams can be added
LUND Format (txt) for physics events

### Data Output

 evio, bank alike binary format by Jlab DAQ group
Root tree, convert from evio
text

### Documentation

### gemc.jlab.org

<u>https://hallaweb.jla</u>
<u>b.org/</u>wiki/index.ph
p/Solid\_sim\_geant4

#### Solid sim geant4

#### Contents [hide]

- 1 Solid simulation with GEMC
  - 1.1 For new user
  - 1.2 general GEMC info
  - 1.3 install GEMC for solid
  - 1.4 run GEMC with SoLID configuration
  - 1.5 Solid mysql database
  - 1.6 define geometry/material/sensitivity
  - 1.7 magnetic field map
  - 1.8 hit processing
  - 1.9 simulation output
  - 1.10 event generator
  - 1.11 Batch Farm Project
  - 1.12 thought on solid gemc developing
- 2 Compare to geant3 result
- 3 talks and notes
- 4 Frame ideas before we adopted GEMC
  - 4.1 Strategy/task/milestone
  - 4.2 Framework Ideas (Seamus)

### Advantage

- Central outside location of geometry/sensitivity/field/digitization
- Customized hit processing for various detectors
- Unified individual detector simulation and the whole SoLID simulation

# **GEMC** update

#### Progress

- Mirrors, done in the "identifiers" entry of the geometry, control optical property on fly.
- Right click to output geometry in GDML format.
- Mother particle tracking becoming optional to optimize speed.

#### Todo list

- Move material definition into database also.
- Move svn repository out of clas12svn and restructure.
- Improve database I/O.
- Adapt to Geant4.9.4.

# SoLID GEMC update

#### Progress

- Add "solid" HIT\_PROCESS\_LIST
- More database added in soliddb.jlab.org to allow for the full SoLID, its subsystems simulation. Also database for individual developers.
- PVDIS and SIDIS yoke designs and field maps are unified
- More materials added for our setup.
- More instructions on wiki
- Rewrote many geometry to avoid overlap and added more
- EC simulation in GEMC is under work.
- Baffle redesign for various magnets
- Event generators updated for PVDIS and SIDIS
- Study configuration with ZEUS magnet.

#### Todo list

- Move subsystem simulation to GEMC
- Customize hit routine
- Direct root output

### Compare geant4 to geant3 results

### Progress

- SIDIS kinematics and angle distribution
- SIDIS and PVDIS low energy background rate.

### **Todo list**

- Acceptance
- Detector resolution

# CLAS12 SVT

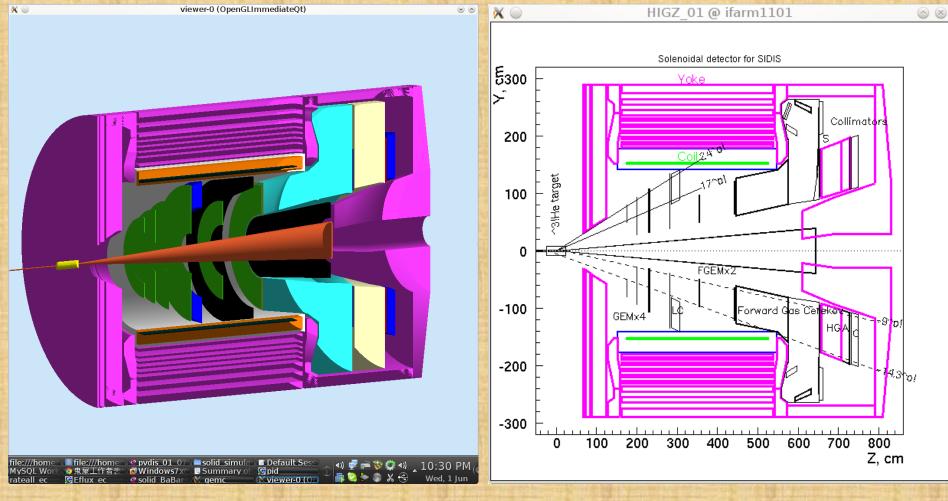
#### Validation

|           | EM           | Hadronic | Total |
|-----------|--------------|----------|-------|
| <b>1a</b> | 57.68        | 2.588    | 60.27 |
| 1b        | 43.29        | 2.124    | 45.41 |
| 2a        | <b>50.82</b> | 3.685    | 54.51 |
| 2b        | <b>41.91</b> | 3.162    | 45.07 |
| 3a        | 44.59        | 4.813    | 49.4  |
| 3b        | 38.04        | 4.354    | 42.4  |

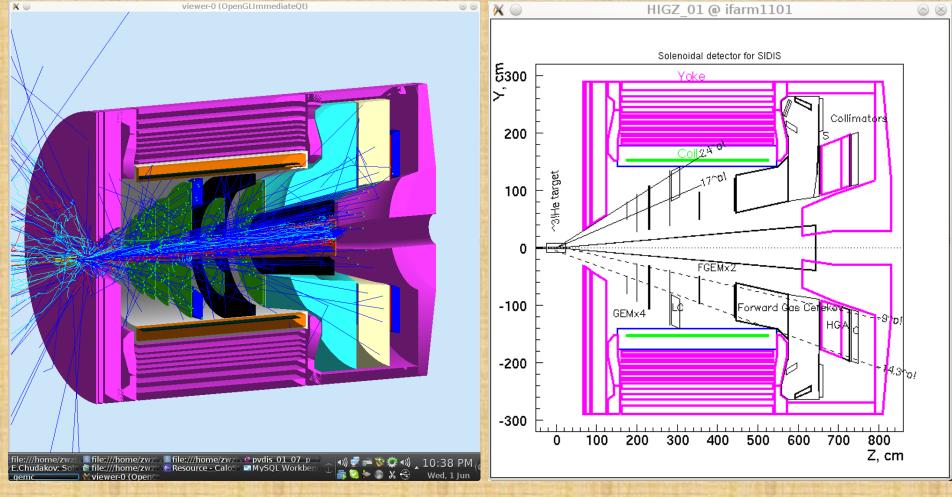
- Layer 1 Total : 57.5 , hadrons : 3.4
- Layer 2 Total : 51.1 , hadrons : 3.3
- Layer 3 Total : 57.0 , hadrons : 4.3
- Layer 4 Total : 51.3 , hadrons : 4.0
- Layer 5 Total : 53.5 , hadrons : 4.3
- Layer 6 Total : 49.4 , hadrons : 4.0

#### Geant4

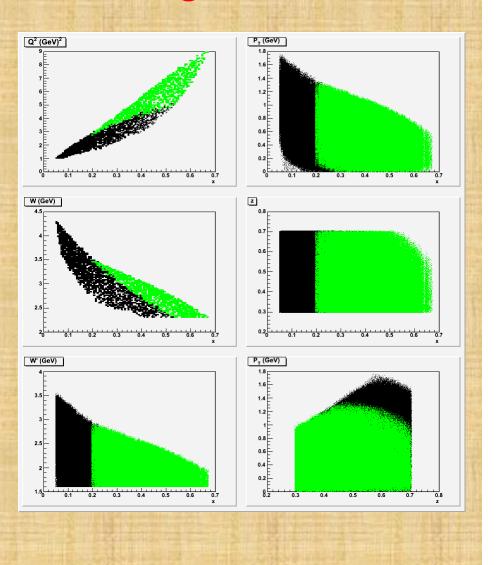
#### Geant3


#### All rates in MHz




Thomas Jefferson National Accelerator Facility Page 27




# SIDIS with BaBar Magnet geant4 geant3



# SIDIS with BaBar Magnet geant4 geant3



### Kinematics for SIDIS with BaBar geant4 geant3



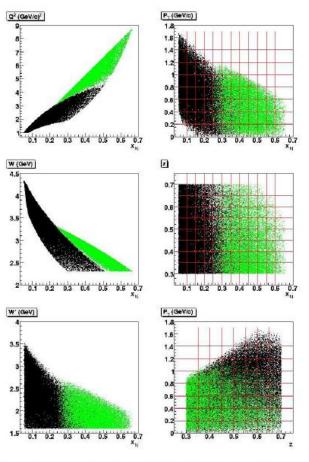
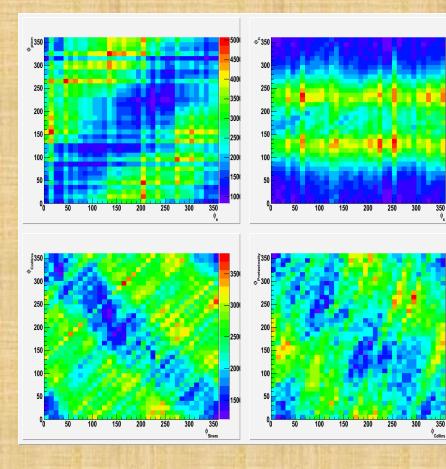
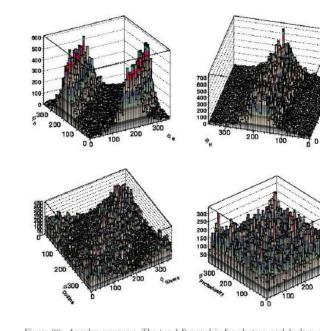
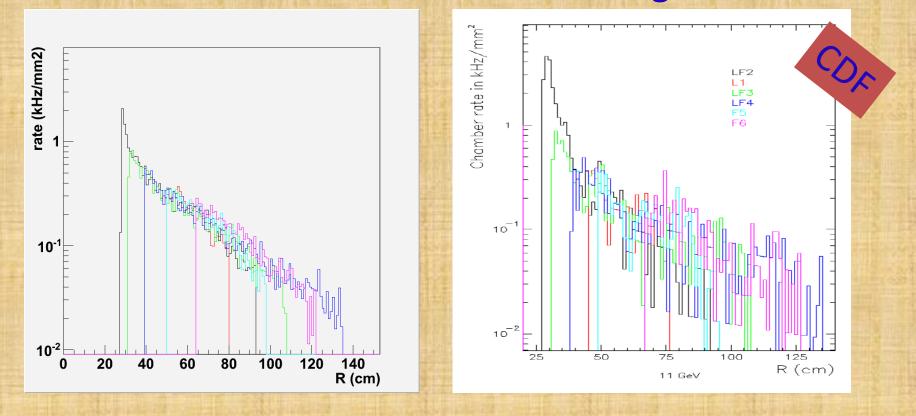
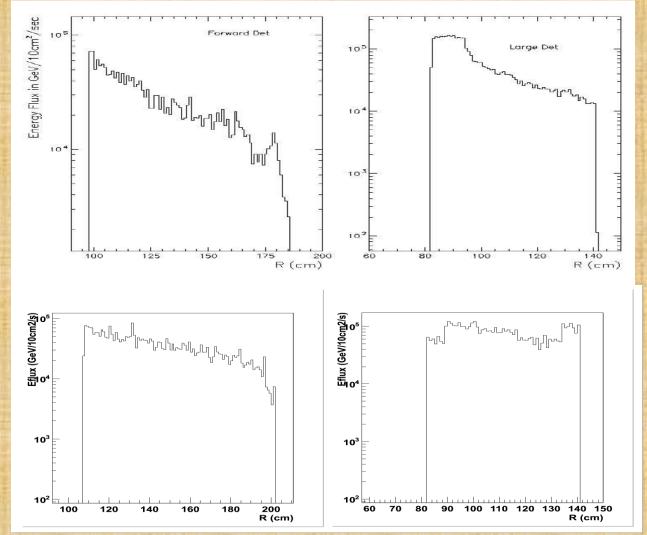




Figure 19: Kinematic coverage for the solenoid detector with a 11 GeV electron beam. The black points show the coverage for the forward angle detector and the green points show the coverage for the large angle detector.

### Phase Space, Collins and Sivers Angle Coverage for SIDIS with BaBar geant4 geant3





Figure 20: Angular coverage: The top left panel is for electron and hadron azimuthal angle. The top right panel is the  $\phi_S$  and  $\phi_b$  angle. The bottom left panel is the  $\phi_{Collins}$  and  $\phi_{Sivers}$  and the bottom right panel is the  $\phi_{Collins}$  and  $\phi_{Protectosty}$ . The proposed experiment has the full  $2\pi$  coverage in all azimuthal angular coverage.

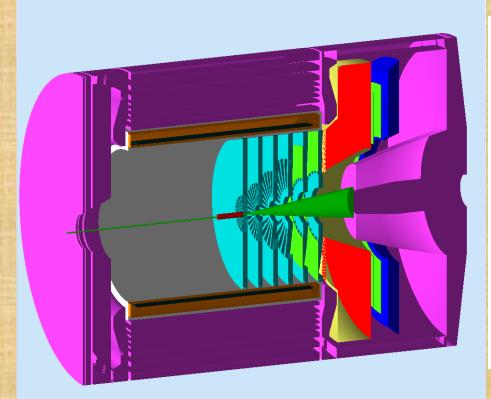
### Background rate on GEM for SIDIS with BaBar geant4 geant3



Condition: 15uA 11GeV e- beam, 40cm 3He 10amg gas target Result: geant4 is about 1/2 of geant3 with a different magnet

### Energy flux rate on EC for SIDIS with BaBar



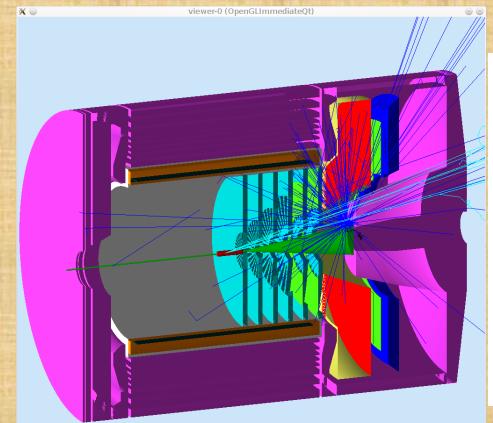

Condition: 15uA 11GeV e- beam, 40cm 3He 10amg gas target Result: geant4 is close to geant3 with the same magnet

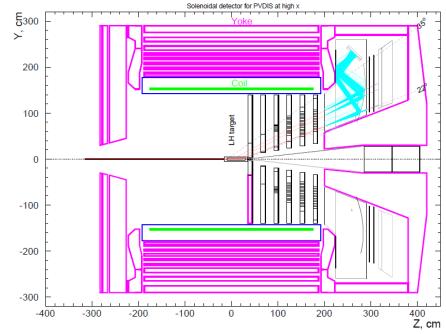
geant3

geant4

### PVDIS with BaBar Magnet geant4 geant3

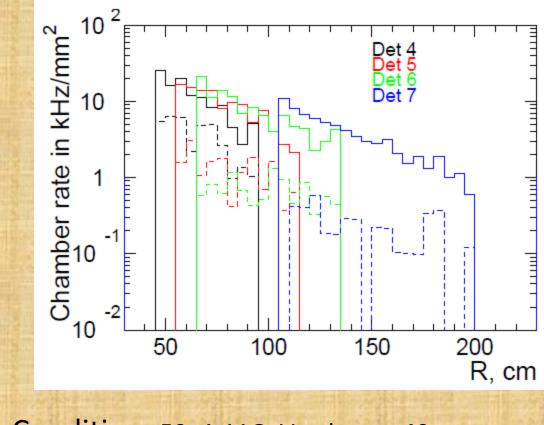
 $\odot$ 





viewer-0 (OpenGLImmediateQt)

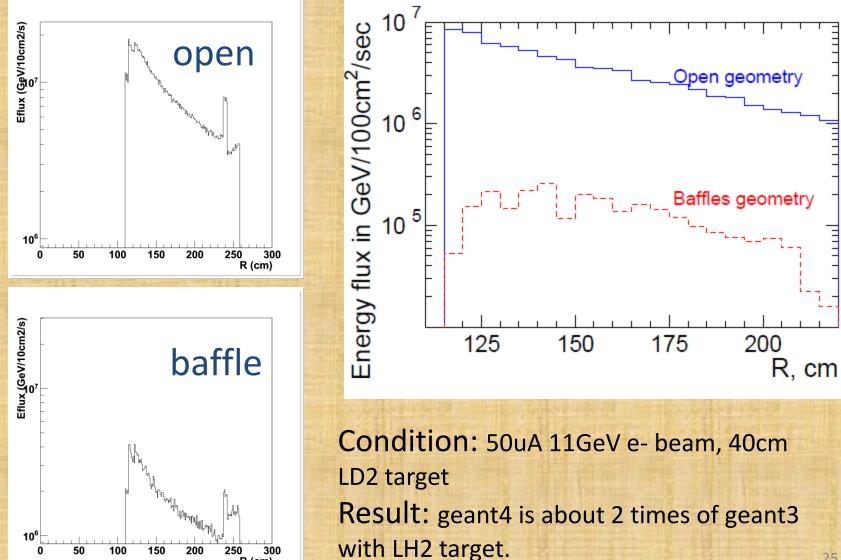
X 💿





# PVDIS with BaBar Magnet geant4 geant3






### Background rate on GEM for PVDIS with BaBar geant4 geant3





Condition: 50uA 11GeV e- beam, 40cm LD2 target Result: geant4 is about 2 times of geant3 with LH2 target.

#### Energy flux rate on forward EC for PVDIS with BaBar geant3 geant4



R (cm)

# Summary

- Solid Simulation is making progress.
- Geant4 physics is under control.
- The program is ready to be used for various studies to help design.
- Subsystem simulation should take advantage of the framework.

# Thanks

- Maurizio Ungaro
  - Paul Reimer
- Seamus Riordan
  - Lorenzo Zana
- Simona Malace
  - Yang Zhang
- Eugene Chudakov
  - Xin Qian
  - Zhiwen Zhao