SOLID Physics Overview

Physics Topics

- SIDIS
 - 8 TMD's; function of x Q², PT, z
- PVDIS
 - Standard Model test
 - CSV at the quark level
 - Quark-quark correlations

Motivation for PVDIS

Statistical Errors (%) vs. Kinematics

A/Q² should be perfectly flat! (Modulo small y-dep)

Measurement of TSSA in SIDIS with SoLID on ³He

TMDs are a fundamental property of the nucleon. They provide a 3-D description of nucleon structure in momentum space, and a direct access to QCD dynamics.

- <10% d quark tensor charge (Collins moments)
 - Fundamental property of nucleon
 benchmark test of Lattice QCD
- 4-D (x,Q^2,z,P_T) mapping of **Sivers moments, etc.**
 - Spin-orbital correlation: promising to access
 Orbital Angular Momentum (OAM)
 - Provide precision data to test TMD factorization and scale evolution

Leading-Twist TMD PDFs

Measuring TMD's

All 8 TMD's will be measured

Data Required

Variables:

- x: Strong Dependence
- P_T: Strong Dependence
- Q²: HT and QCD Evolution
- z: Test Fragmentation Theory

Example projections of Neutron Collins moments, 1/48 bins in z vs. Q².

		т.	12					
	I.	······	······	******		*****	······	-0.2
	< Q ² < 3 .30 < z < 0.35	2 < Q ² < 3 0.35 < z < 0.40 I	2 < Q ² < 3 0.40 < z < 0.45 z	2 < Q ² < 3 0.45 < z < 0.50	2 < Q ² < 3 0.50 < z < 0.55	2 < Q ² < 3 0,55 < z < 0.60	2 < Q ² < 3 0.60 < z < 0.65	2 < Q ² < 3 0.65 < z < 0.70
	······ · ······ ·	······· ·	·······	••••••	xII	· · · · · · · · · · · · · · · · · · ·	• 1	
3	< Q ² < 4 .30 < z < 0.35	3 < Q ² < 4 0.35 < z < 0.40 I	3 < Q ² < 4 0.40 < z < 0.45	3 < Q ² < 4 0.45 < z < 0.50	3 < Q ² < 4 0.50 < z < 0.55	3 < Q ² < 4 0.55 < z < 0.60	3 < Q ² < 4 0.60 < z < 0.65	3 < Q ² < 4 0.65 < z < 0.40
	II IIIII I	1111 I +211 · I 	····· ·	I I	Z =		I 	-0.2 -0.2
4 0.	< Q ² < 5 .30 < z < 0.35	4 < Q ² < 5 0.35 < z < 0.40	4 < Q ² < 5 0.40 < z < 0.45	4 < Q ² < 5 0.45 < z < 0.50	4 < Q ² < 5 0.50 < z < 0.55	4 < Q ² < 5 0.55 < z < 0.60	4 < Q ² < 5 0.60 < z < 0.65	4 < Q ² < 5 0.65 < z < 0.70 2
	··· .] I I -	· · · · · · · · · · · · · · · · · · ·		••••	• •	• • • •	• •	-0.2 -0.4
5 0.	< Q ² < 6 .30 < z < 0.35	5 < Q ² < 6 0.35 < z < 0.40	5 < Q ² < 6 0.40 < z < 0.45	5 < Q ² < 6 0.45 < z < 0.50	5 < Q ² < 6 0.50 < z < 0.55	5 < Q ² < 6 0.55 < z < 0.60	5 < Q ² < 6 0.60 < z < 0.65	5 < Q ² < 6 0.65 < z < 0.40
				•	•		•	-0.2 -0.2 -0.4
6 0.	< Q ² < 8 .30 < z < 0.35	6 < Q ² < 8 0.35 < z < 0.40	6 < Q ² < 8 0.40 < z < 0.45	6 < Q ² < 8 0.45 < z < 0.50	6 < Q ² < 8 0.50 < z < 0.55	6 < Q ² < 8 0.55 < z < 0.60	6 < Q ² < 8 0.60 < z < 0.65	6 < Q ² < 8 0.2≥ 0.65 < z < 0.70
	I	I	T	r.	1	I	I	-0.4

SIDIS Setup

- 10³⁶ N/cm²/s polarized luminosity
- Achieved Target Performance:
 - Transverse/Vertical Polarized
 - ~60% polarization + Fast Spin Flip
- Large acceptance → 4-D mapping
- Full azimuthal-angular coverage
 -> smaller systematic uncertainties

SIDIS Setup

✓ International collaboration (8 countries, 50+ institutes)

✓ Rapid Growth in US-China Collaboration

✓ **Joint effort** with PVDIS-SoLID (shared detector/DAQ). Transverse and longitudinal-³He.

✓ Magnet: CLEO [ANL, Syracuse, Jlab, UVA]

✓ Pipeline DAQ (Hall D standard) {Umass, Jlab}

✓ **GEM Tracker** (Chinese Hadron Collaboration with Jlab/UVA/INFN, large GEM plane @ CERN + Improved Electronics)

✓ **MRPC TOF** (Chinese Hadron Collaboration, successful in RHIC-STAR)

✓ Detailed conceptual design of Gas Cerenkov (1-mirror + Cs-GEM readout or PMT + Wiston Cone) [Temple, Duke, Stonybrook]
 ✓ 1st choice of Shashlyk with detailed detector simulation for E&M Cal [UVA, Los Alamos, ANL]

PVDIS vs SIDIS

PVDIS

SIDIS

Cau you find six differences between these panels? GEM Layout, Extra E-Cal, Beam Pipe GEM Layout, Extra E-Cal, Beam Pipe

PVDIS Setup

Conclusions

- The SOLID collaboration has a broad collection of physics topics
- A single (sort of) apparatus can meet all the needs of the program.

SIDIS and Transverse Spin with the SoLID Spectrometer

Projections and Comparison with Calculations

ultimate precision 4-D mapping of azimuthal asymmetries

- 35 PAC days on longitudinally pol. ³He target (8.8 & 11 GeV)
- Share commissioning and g_{1T} data with E12-10-006 (SoLID-Neutron Transversity)
- High statistics and excellent systematic uncertainty
- >1000 4-D bins for A_{LL} , A_{UL} or A_{LT} with π^{\pm} together, 1 of 48 Z-Q² panels of π^{-} shown here
- Neutron asymmetries: $\delta A_{etat} \approx 0.5\%$ (absolute)

• Test TMD relations at matching kinematics

• suggested by a large class of models based on geometrical symmetry, also supported by lattice calculations

• Test of WW relations, provides a constraint on Transversity

E12-11-007: SIDIS using Longitudinally Pol. ³He and SoLID a study of spin-orbital correlation

- Semi-Inclusive DIS π^{\pm} production
 - Longitudinally Pol. ³He target effective pol. neutron target, achieved world-best performance
 - SoLID large symmetric acceptance detector, high statistics and better angular modulation separation
 - $Ext(sin(2\phi_h)) \rightarrow bhe I TMDs^-$
 - $A_{LT}(\cos(\phi_h \phi_S)) \rightarrow g_{1T}$
 - $A_{LL} \rightarrow g_{1L}$ • • •

WORM-GEAR

- - distributions, interference of OAMs: $Re[(L=0)_{a} \times (L=1)_{a}]$ p_{T} dependent helicity distribution

•

- Many predictions available
- First Lattice QCD calculation
- · Light-cone quark model and others
- No GPD Correspondence
- Genuine sign of intrinsic transverse motion n_{11}
- Links to Collinear PDFs $g_{1T}^{q(1)}(x) \approx x \int \frac{dy}{y} \cdot g_1^q(y)$

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$A_{UT}(\varphi_h^l,\varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

= $A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$
+ $A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$

$$\begin{aligned} A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{aligned}$$

• Semi-Inclusive DIS π^{\pm} production

- Longitudinally Pol. ³He target effective pol. neutron target, achieved world-best performance
- **SoLID** large symmetric acceptance detector, high statistics and better angular modulation separation
- Extraction of novel TMDs
- •
- ullet

•

Many predictions available

- First Lattice QCD calculation
- Light-cone quark model and others
- No GPD Correspondence
- Genuine sign of intrinsic transverse motion
- Links to Collinear PDFs

Experimental Update

steady progress since approval by PAC37

• Joint efforts of three approved experiments + one new proposal, international collaboration: eight countries and 50+ institutions

- Same detector/DAQ setup with E12-10-006 (SoLID-Neutron Transversity), share beam time for calibration and A_{LT} data
- Share detector/DAQ setup with E12-10-007 (SoLID-PVDIS)
- SoLID-Proton Transversity being proposed

Status of SoLID Components

- **Magnet**: completed study of all magnet options, pursuing CLEO now
- DAQ: pipelined, similar to Hall D
- **Simulation Frame Work**: customized GEANT4 environment, fully set up
- **Calorimeter**: options studied, Shashlyk selected as 1st choice, contacted IHEP (Russia) production group
- **Tracking/Cerenkov/MRPC**: presented in the SoLID-neutron Transversity update
- Complementary data on proton target
 - A_{UL}: CLAS12 E12-07-107
 - A_{LT} : Proton Transversity SoLID/CLAS12

Measurement of TSSA in SIDIS with

Solid on ³He TMDs provide a 3-D description of nucleon structure in momentum

space

- and a direct access to QCD dynamics.
 <10% d quark tensor charge (Collins moments)
 - Fundamental property of nucleon benchmark test of Lattice QCD
- 4-D (x,Q^2,z,P_T) mapping of **Sivers moments**
 - Spin-orbital correlation: promising to access
 Orbital Angular Momentum (OAM)
 - Provide precision data to test TMD factorization and scale evolution
 - Search for sign change in Sivers function (possible resolution to sign mismatch SIDIS vs. pp)
- Aim for first non-zero Pretzelosity Moments
 - Direct Probe of relativistic effect and OAM within models
- Large Acceptance Device handling High Luminosity
 - Need a dedicated device: SoLID!
- Measuring cross section ratios on p. d. ³He

Ultimate Precision Measurements of 4-D Neutron Collins, Sivers, and Pretzelosity Moments

Collins Effect

SIDIS Physics

- Semi-Inclusive DIS π^{\pm} production
 - Longitudinally Pol. ³He target effective pol. neutron target, achieved world-best performance
 - **SoLID** large symmetric acceptance detector, high statistics and better angular modulation separation
 - Extraction of novel TMDs
 - $A_{UL}(\sin(2\phi_h)) \rightarrow h_{1L}^{\perp}$
 - $A_{LT}(\cos(\phi_h \phi_S)) \rightarrow g_{1T}$
 - $\bullet \ A_{LL} \rightarrow g_{1L} \quad \bullet \bullet \bullet \quad \bullet \bullet \bullet$
- Many predictions available
- First Lattice QCD calculation
- Light-cone quark model and others
- No GPD Correspondence
- Genuine sign of intrinsic transverse motion
- Links to Collinear PDFs

OAMs:)_q] ion

Light-Cone CQM, arXiv:0806.2298