New Proposal PR12-11-108:

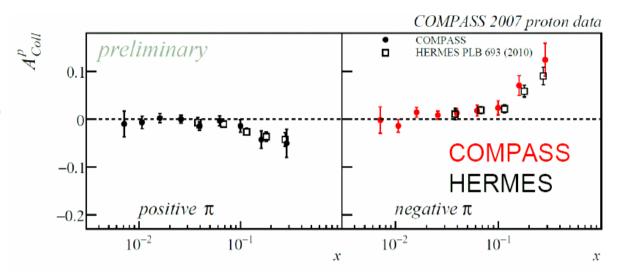
SIDIS Using SoLID and Transversely Polarized Proton Target

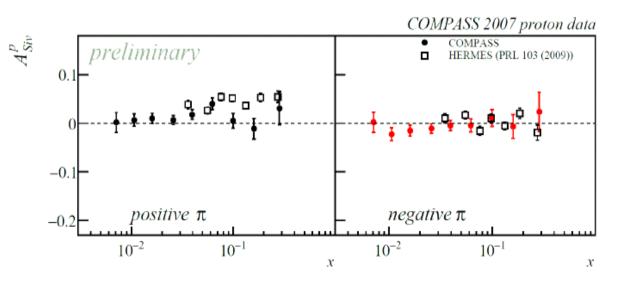
Kalyan Allada Jefferson Lab

Spokespersons: K. Allada (JLab), J. P. Chen (JLab), Haiyan Gao (Duke), Xiaomei Li (CIAE), Z-E. Meziani (Temple)

(Presented to PAC38 as a Hall-A and SoLID Collaboration proposal)

SoLID Collaboration Meeting, Newport News, Oct 14th 2011


Leading Twist TMDs


Distributions we can measure in this experiment

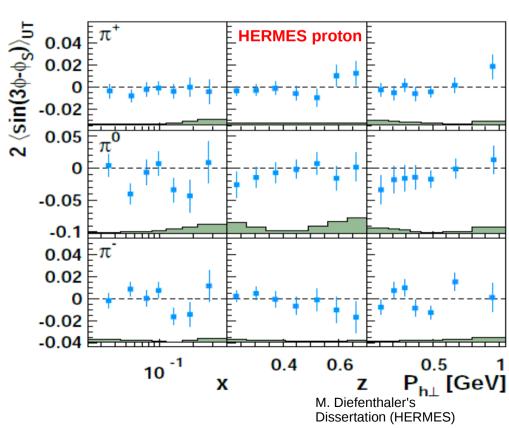
Collins and Sivers Moments

- Currently available data in SIDIS :
 - HERMES proton (2002-2005)
 - COMPASS proton (2007) and (2010-11)
 - COMPASS deuteron (2004-2006)
 - Hall-A E06010 neutron (2009)

- HERMES and COMPASS proton:
 - Large and opposite signals for π^+ and π^- Collins moments
 - Large signal in π^+ Sivers moments
- COMPASS deuteron:
 - Small (near zero) signals on both Collins and Sivers moments

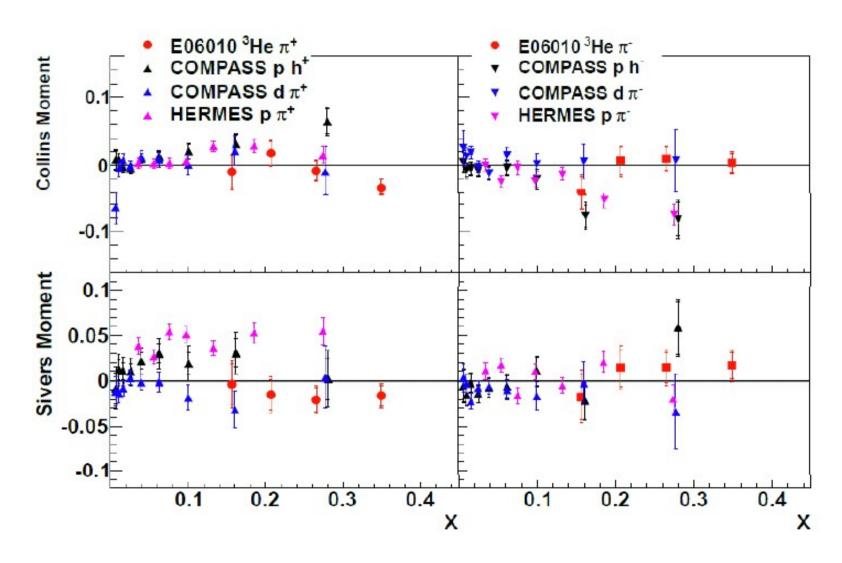
Pretzelosity and g_{1T}

Pretzelosity


HERMES and COMPASS proton:

• No clear signal seen on $sin(3\phi_h - \phi_s)$ moments -0.05

g_{1T} (trans-helicity)


- Measure A_{IT} using Double Spin Asymmetry
- Existing A_{IT} data:
 - HERMES (proton)
 - COMPASS (proton)
 - Hall-A (neutron)
- This measurement will cover large x region

World Data on Collins and Sivers: (p, d, ³He)

Target SSA on transversely polarized targets

Moments integrated over other dimensions (z, P_T)

Proposed Experimental Goals

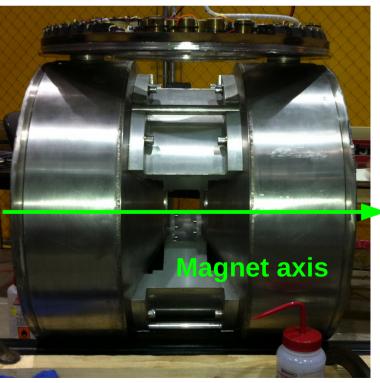
- Provide ultimate precision $4d(x, z, P_T, Q^2)$ mapping of target SSA in the valence quark region for proton
- Flavor decomposition of Transversity, Sivers and Pretzelosity (when combined with neutron data)
- Extract tensor charge of both u and d-quark to better than 10% accuracy
- Extract leading-twist TMD, g_{1T} using DSA


$$P = u_p(\frac{4}{9}) \oplus u_p(\frac{4}{9}) \oplus d_p(\frac{1}{9}) = u_p(\frac{8}{9}) \oplus d_p(\frac{1}{9})$$
 Dominated by u-quark

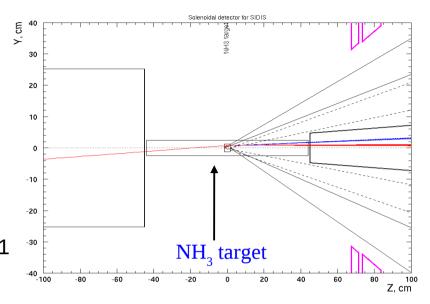
$$N = u_n(\frac{4}{9}) \oplus d_n(\frac{1}{9}) \oplus d_n(\frac{1}{9}) \stackrel{\textit{C.S.}}{=} d_p(\frac{4}{9}) \oplus u_p(\frac{2}{9})$$
 Sensitive to d-quark

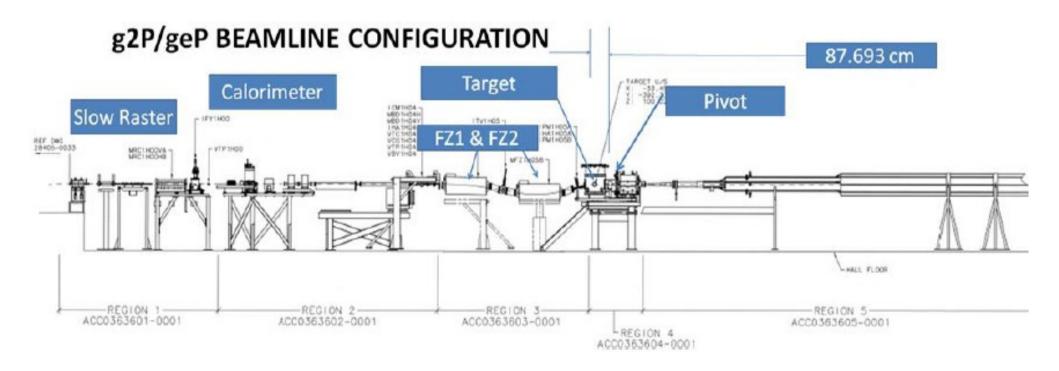
Experiment Overview

$$e + p^{\uparrow} \longrightarrow e' + \pi^{+/-} + X$$

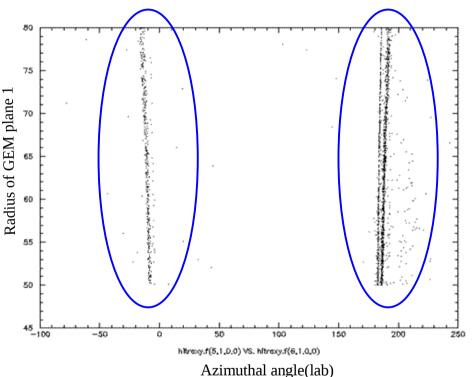

- Similar detector setup as that of two approved ³He SoLID expts.
- JLab/UVa polarized NH₃ target with upgraded design of the magnet
- Target spin-flip every two hours with average in-beam polarization of 70%
- Two Beam energies: 11 GeV and 8.8 GeV
- Polarized luminosity with 100nA current: 10³⁵ cm⁻²s⁻¹
- Beamline chicane to transport beam through 5T target magnetic field (already designed for g2p expt.)

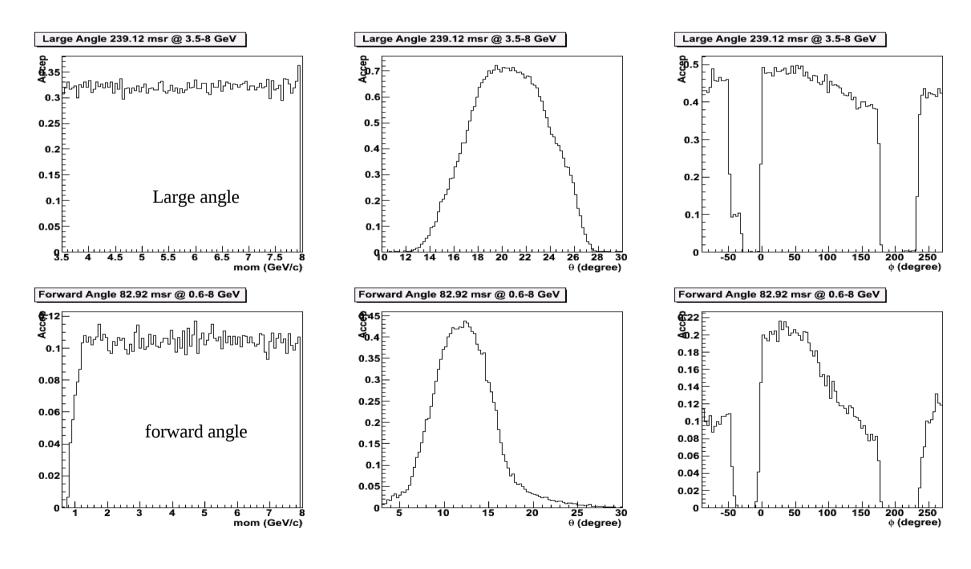
Polarized Target


- JLab/UVa/SLAC polarized target, used in many different experiment (SANE, RSS etc..)
 - 3cm long NH₃target
 - 5 Tesla superconducting magnet
 - Dynamic Nuclear Polarization(DNP) using microwave pumping
 - Target magnet optimized for longitudinal setting
 - Opening of +/- 45° in long. direction
 - Opening of +/- 17° in transverse direction
- Need new magnet to cover entire phase space (proposed)
 - Nominal opening of +/- 28° in transverse direction
- Spin-flip using Adiabatic Fast Passage(AFP) technique
- Plans to improved packing fraction (using target disks instead of beads)

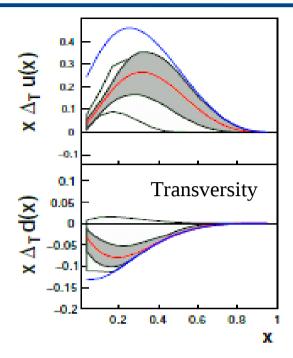


Beamline Instrumentation


- · Beam Chicane:
 - Two chicane magnets to steer beam through target magnetic field
- Beam Diagnostics:
 - BPM, BCM, slow raster will run at low current (100nA) in Hall-A
 - These upgrades are being done for g2p/GEp running for Fall 2011 run
- We will gain experience from g2p/GEp running in Dec, 2011


Backgrounds

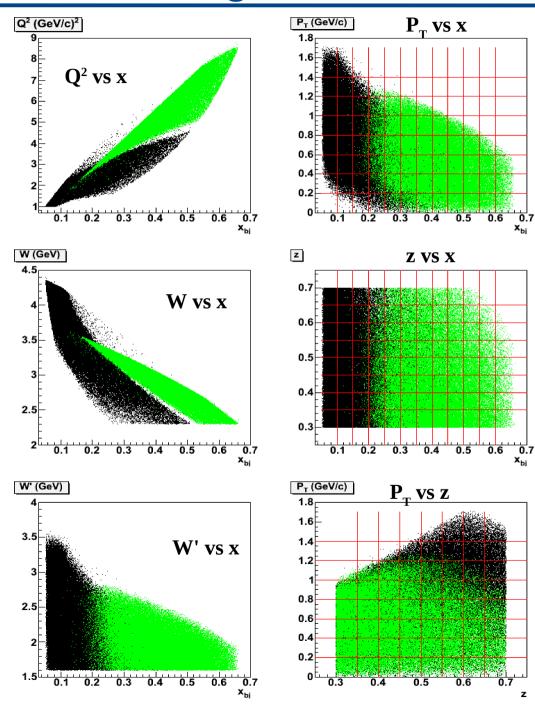
- GEANT3 simulation was performed
- "Sheet of flame" background: High rates in localized area of acceptance (due to high target magnetic field)
- Turn off/remove relevant areas of the detectors
- Low momentum particles will be swept away by the target field
 - First GEM plane is about 1.7m away from the target
- Rates on GEMs < 1 kHz/mm²
 (GEMs can handle very high rates COMPASS expt.: 30kHz/mm²)
- Tracking is not an issue at these rates (as demonstrated in ³He SoLID proposal)
 - Rates and multiplicities are much smaller outside the "sheet of flame" (compared to ³He SoLID proposal) due to lower luminosity



Acceptance (electron)

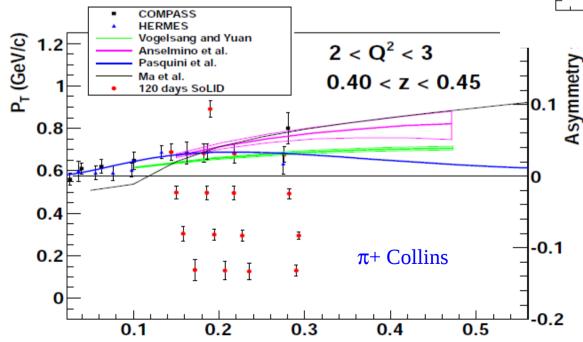
- Acceptance studies done with GEANT3 model including realistic target fields
- Acceptance of theta extend to lower and higher angles compared to the no target field situation

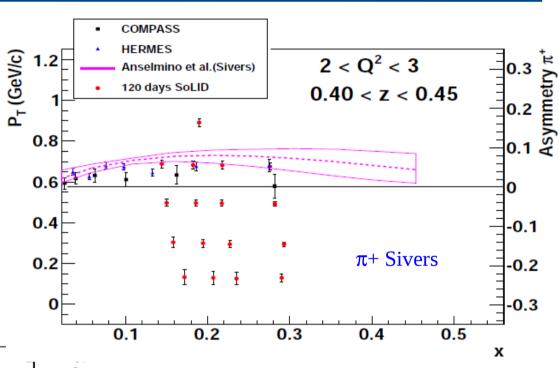
Kinematics Coverage


Coverage with 11 GeV beam (both **forward** and **large angle**)

•
$$x_B = 0.05 - 0.68$$

•
$$Q^2 = 1.0 - 9.0 (GeV/c)^2$$


•
$$P_{T} = 0 - 1.8 \text{ GeV/c}$$


•
$$z = 0.3 - 0.7$$

A_{UT} **Projections**

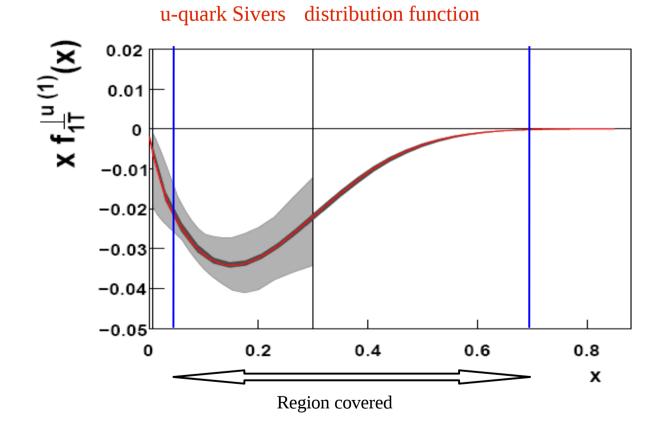
- Projections for one out of 48 panels in Q² and z
- Partial loss of azimuthal coverage due to "sheet of flame" background taken into account
- Dilution and packing fraction included
- 120 days of running

A_{UT} Projections (π^+ Sivers)

 $Q^2 = 1.0 (GeV/c)^2$

 $\begin{aligned} & \text{Multi-dimensional} \\ & \text{binning in} \\ & x, \, Q^2, \, p_{\scriptscriptstyle T}, \, z \end{aligned}$

(674 bins in total)


1.2	I 1 < Q ² < 2 II I 0.35 < z < 0.40	I 1 < Q ² < 2 III p0.40 < z < 0.45	I 1 < Q ² < 2 III I 0.45 < z < 0.50	i 1 < Q ² < 2 iii i0.50 < z < 0.55	i 1 < Q ² < 2 III i 0.55 < z < 0.60	i 1 < Q ² < 2 ii 0.60 < z < 0.65 iii 1	I 1 < Q ² < 2 II 0.65 < z < 0.70
0.4 1 < Q ² < 2 0.2 1111 0,30 < z < 0.35 0 1.2 0 0 ² 0	tor . In . In .	m Im . IIII i	1111 · 1111 · []]] 1	ini • ini • []]] i	im . III : IIII I	in · in · iii ·	im : im : iii
.2	2 < Q ² < 3 0.35 < z < 0.40	2 < Q ² < 3 0.40 < z < 0.45 III I	2 < Q ² < 3 0145 < z < 0.50	2 < Q ² < 3 0450 < z < 0.55	2 < Q ² < 3 0.55 < z < 0.60 I I	2 < Q ² < 3 0.60 < z < 0.65	2 < Q ² < 3 0.65 < z < 0.70
2 HHH 1	1111 · 1111 · [H] 1	1111 : 1111 : 1111 :			lii i		III
2 3 < Q ² < 4 0.30 < z < 0.35	3 < Q ² < 4 0.35 < z < 0.40 !	3 < Q ² < 4 0.40 < z < 0.45	3 < Q ² < 4 0.45 < z < 0.50	3 < Q ² < 4 0.50 < z < 0.55	3 < Q ² < 4 0.55 < z < 0.60	3 < Q ² < 4 0.60 < z < 0.65	3 < Q ² < 4 0.65 < z < 0.7
1	I I I	I	II s	I I I	III	1 1	I
2- 4 < Q ² < 5 0.30 < z < 0.35	4 < Q ² < 5 0.35 < z < 0.40	4 < Q ² < 5 0.40 < z < 0.45	$4 < Q^2 < 5$ $0.45 < z < 0.50$	4 < Q ² < 5 0.50 < z < 0.55	4 < Q ² < 5 0.55 < z < 0.60	4 < Q ² < 5 0.60 < z < 0.65	4 < Q ² < 5 0.65 < z < 0.7
I :	I i	Ιį	I	ŧ	I	I	I
5 < Q ² < 6 0.30 < z < 0.35	5 < Q ² < 6 0.35 < z < 0.40	5 < Q ² < 6 0.40 < z < 0.45	5 < Q ² < 6 0.45 < z < 0.50	5 < Q ² < 6 0.50 < z < 0.55	5 < Q ² < 6 0.55 < z < 0.60	5 < Q ² < 6 0.60 < z < 0.65	5 < Q ² < 6 0.65 < z < 0.7
<u> </u>	Ī	Į	ì	ţ	I	I	ŀ
6 < Q ² < 8 0.30 < z < 0.35	6 < Q ² < 8 0.35 < z < 0.40	6 < Q ² < 8 0.40 < z < 0.45	6 < Q ² < 8 0.45 < z < 0.50	6 < Q ² < 8 0.50 < z < 0.55	6 < Q ² < 8 0.55 < z < 0.60	6 < Q ² < 8 0.60 < z < 0.65	6 < Q ² < 8 0.65 < z < 0.7
0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5

 $Q^2 = 8 (GeV/c)^2$

Impact

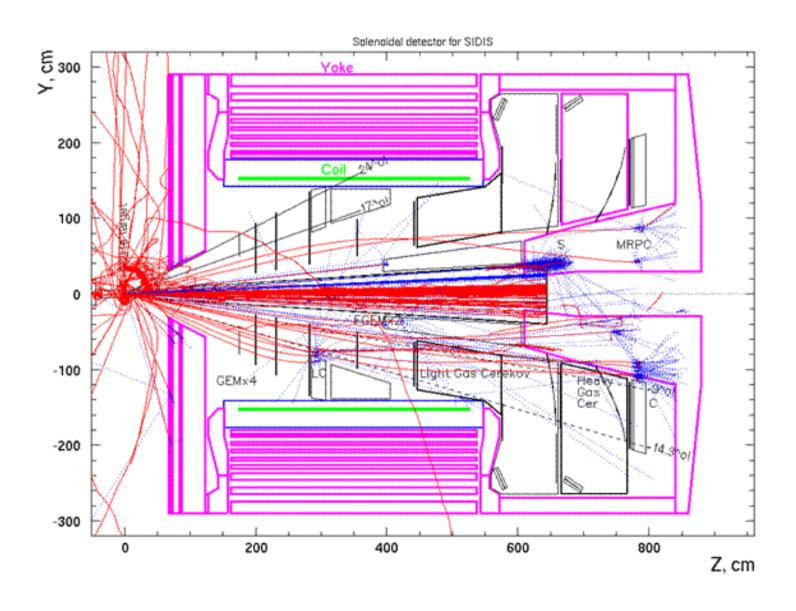
Impact of this measurement on u-quark Sivers distribution function

- Current uncertainties shown in light grey band
- Projected uncertainties shown in dark grey band

A. Prokudin

Updates and Issues

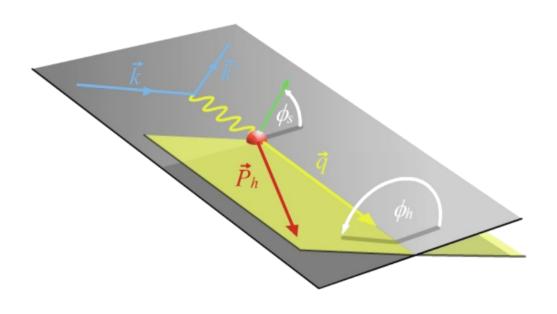
(To be addressed before next PAC)


- PAC38 conditionally approved this proposal pending new magnet design
- Magnet Design: optimize transverse/longitudinal opening and get a design done from Oxford and/or Scientific Instruments
- Simulation: Migrate from GEANT3 to GEANT4 (Chao Peng from Duke is working on it)
- GEANT4 simulation: (To do)
 - Reproduce GEANT3 results (signal and background rates, phase space etc..)
 - Change from BABAR to CLEO magnet
 - Add target geometry (coils, scattering chamber, windows etc.)
 - Background shielding study
 - Tracking and reconstruction
 - Study the effect of synchrotron radiation due to upstream chicane and target magnets
- TOSCA calculations to study the forces between SoLID and target magnet (Hall-A design engineer support?)

Summary

- A new proposal to measure SSA in SIDIS using SoLID and transversely polarized proton was submitted to PAC38
 - It was conditionally approved
- Will provide most precise SSA/DSA data on proton in the kinematic region:
 - 0.05 < x < 0.68
 - 0.3 < z < 0.7
 - P_Tup to 1.8 GeV/c
 - Q² up to 9 (GeV/c)²
- Get the GEANT4 simulation working and address all the issues for next PAC

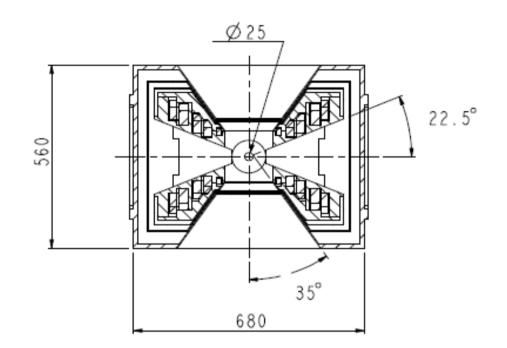
Backup Slides


Event Display

Asymmetry

$$A_{UT}^{h}(\phi_h, \phi_S) = \frac{1}{(p_T)} \cdot \frac{N_1(\phi_h, \phi_S) - N_2(\phi_h, \phi_S + \pi)}{N_1(\phi_h, \phi_S) + N_2(\phi_h, \phi_S + \pi)}$$

- Asymmetry formed using luminosity normalized yields
- Asymmetry extraction
 - 2D(ϕ_h, ϕ_s) fitting
 - Maximum Likelihood Estimation (MLE)
- Well established analysis methods in 6GeV E06-010 experiment
- Systematics reduced with spin-flip


Systematic Uncertainties

Sources	Туре	Collins(π+)	Collins(π-)	Sivers(π+)	Sivers(π-)
Raw asymmetry	absolute	6.5E-3	6.5E-3	6.5E-3	6.5E-3
Dilution factor	relative	5%	5%	5%	5%
Diffractive vector meson	relative	3%	2%	3%	2%
Radiative correction	relative	2%	2%	2%	2%
Target polarization	relative	3%	3%	3%	3%

- Other systematics:
 - Detector efficiency/acceptance/luminosity : < 2 % in each spin-pair
 - Target polarization direction, random background: negligible
 - ullet For contributions from A_{iji} , we will take dedicated data
- Systematics < statistical precision

Target Split-Coil Design

- A preliminary magnet design with transverse opening of 22.5° was performed for CLAS
- We are proposing a new design with +/-28° opening in transverse direction
- D. Crabb (UVa) is in the process of discussing the design with two companies (Oxford and Scientific Magnets)

Preliminary design done for CLAS