SoLID Simulation Update

Zhiwen Zhao University of Virginia SoLID Collaboration Meeting 2011/10/14

efferson Lab

- Introduction
- GEMC Update
- Simulation Study
- Summary

Introduction

- SoLID collaboration has successfully adopted GEMC as its Geant4 simulation framework and joined in GEMC development. The framework is used for various studies to help detector design.
- A lot of subsystem design and simulation progresses have been made. More studies are under way.

GEMC Update

(Maurizio Ungaro)

- GDML output support
- Option to record passby particle or not
- "Signal" interface for every step of each hit

\odot	gemc					
Run Control Camera	Hits List - FLUX 2 hits Hit n. 1 nsteps: 1 Hit n. 2 nsteps: 1 Hit n. 2 nsteps: 1 Signal - FLUX Hit n. 1 nsteps: 1 - Edep[MeV] pid Time[ns] p[M - 0.00151 11 22.1577 2.82					
Detector Detector Infos G4Dialog Signals	Signal: id 1300000					

 (\mathbf{x})

SoLID Simulation Study

- Ideal magnet design
- CLEO magnet design and detector layout
- Energy flux at EC
- GEM response and digitazation

Ideal Magnet

(Mehdi Meziane, Yang Zhang, Paul Reimer, Zhiwen Zhao)

327.6609361 229.4304055

New Magnet

An ideal (short and fat) magnet and yoke are produced.

SIDIS Kinematic Coverage@11GeV

(Mehdi Meziane, Yang Zhang, Paul Reimer, Zhiwen Zhao)

SIDIS kinematics for the ideal magnet is studied

SIDIS Kinematic Coverage@11GeV

(Mehdi Meziane, Yang Zhang, Paul Reimer, Zhiwen Zhao)

The result of the ideal magnet is similar to BaBar/CLEO.

	ZEUS	BaBar/CLEO	CDF	Glue-X	Ideal Magnet
Х	0.05-0.58	0.05-0.65	0.05- 0.64	0.05-0.64	0.05-0.65
z	0.3-0.7	0.3-0.7	0.3-0.7	0.3-0.7	0.3-0.7
Q ²	1-6	1-9	1-7.2	1-8	1-9
W	2.3-4.2	2.3-4.4	2.3-4.2	2.3-4.2	2.3-4.3
W	1.6-3.4	1.6-3.5	1.6-3.4	1.6-3.4	1.7-3.5
Ρ _T	0-1.45	0-1.7	0-1.45	0-1.45	0-1.6

Background in EC

(Zhiwen Zhao, Xin Qian)

- GEMC electron and photon energy flux confirms Geant3 result.
- Hadron energy flux is under study.

- Black: total
- Red: electron
- Green: photon
- Blue: hadron

EC Radiation Resistant

- PVDIS forward angle
 - EM <= 2k GeV/cm²/s + pion,
- SIDIS forward angle
 - EM $\leq =5k \text{ GeV}/\text{cm}^2/\text{s} + \text{pion}$,
- SIDIS large angle
 - EM <=20k GeV/cm²/s + pion,

- total ~<60 krad/year
- total ~<100 krad/year
- total ~<400 krad/year

COMPASS module Radiation hardness ~ 500kRad, See EC talk for improving the property

Typical Shashlik Polyakov, COMPASS Talk, 2010

GEM Response

(Zhiwen Zhao, Evaristo Cisbani)

- # * HoneyComb
- # * 0 NEMA G10 120 um
- # * 1 NOMEX 3
- # * 2 NEMA G10 120 um
- # * Drift Cathode
- # * 4 Kapton 50 um
- # * 3 Copper 5 um
- # * 5 Air 3 mm
- # * GEM0
- # * 6 Copper 5 um
- # * 7 Kapton 50 um
- # * 8 Copper 5 um
- # * 9 Air 2 mm
- # * GEM1
- # * 10 Copper 5 um
- # * 11 Kapton 50 um
- # * 12 Copper 5 um
- # * 13 Air 2 mm
- # * GEM2
- # * 14 Copper 5 um
- # * 15 Kapton 50 um
- # * 16 Copper 5 um
- # * 17 Air 2 mm
- # * Readout Board
- # * 18 Copper 10 um
- # * 19 Kapton 50 um
- # * 20 G10 120 um + 60 um (assume 60 um glue as G10)
- # not implmented yet
- # * Honeycomb
- # * 21 NEMA G10 120 um
- # * 22 NOMEX 3 um
- # * 23 NEMA G10 120 um

- To obtain more realistic
 GEM response, we borrow
 from SBS GEM simulation
 and the geometry and
 material of GEM module
 are realized in GEMC.
- The EM background study is underway.
- For GEM Digitization, see Tracking talk.

Summary

- SoLID GEMC Framework is moving forward.
- Many simulation study is well under way.
- Several tutorials and hand on sessions have been given when I was in China at Tsinghua Univ., CIAE, USTC, and Huangshan Univ.

