Calorimeter Design for SoLID Project

Mehdi MEZIANE, Jin HUANG, Zhiwen ZHAO

SoLID Collaboration Meeting October 15th , 2011, Jefferson Lab

OUTLINE

*****Requirements

Calorimeter design
Best Option
Tunable design
Layout
Light Readout

- Budget Estimate
- Simulation Update
- **Conclusion**

SIDIS/PVDIS CONFIGURATIONS

Calorimeter Design: Best Option

- Lead-Scintillator Sampling Calorimeter: Shashlyk Calorimeter
- Fibers collect and read out the light

- ***** Great flexibility, tunable energy resolution: ~ $6\%/\sqrt{E}$ is not a problem
- Good radiation Hardness: ~ 500 krad/year
- Well developed and mature technology: used previously in other experiments

Calorimeter Design: Lateral Size

Calorimeter Design: Layout - Ring Sector

Excellent coverage (no edge effect)

Small minimum number of blocks but several molds (~50 k each!)

 Block size varies with the radius, so does the position resolution

Calorimeter Design: Layout - Hexagon

Possible edge effects

Larger number of blocks but one molds

Same block size

Only six direct neighbors for each block, easier background determination

Calorimeter Design: Layout - Square

Possible edge effects

 Same number of block as the hexagon layout

Same block size

 Easy assembly and mature production

Calorimeter Design: Layout - Summary

	Hexagon		Square		Sector	
	Small	Large	Small	Large	Small	Large
Size (cm)	10	10	10	10	10.5	9.95
Blocks	912	486	908	492	576	312
Molds	Min 1	Min 1	Min 1	Min 1	Min 9	Min 6
Total	1398 blocks 1 mold ~ \$1.4M		1400 blocks 1 mold ~ \$1.4M		888 blocks 15 molds ~ \$1.64M	

- Preferred configuration: Square
 - Easy assembly
 - Mature production
 - Greater Flexibility (easier rearrangement)

Calorimeter Design: Light Read-out

Large Angle Calorimeter:

- Preferred option: transport light outside the magnetic field.
- PMT read out outside the magnet is easy to maintain.

Forward Angle Calorimeter:

- Option 1 : transport light outside the endcap, easy access
- Option 2 : in field light readout (<100G). Need PMT with mu-metal shielding

Both options are under studies

Calorimeter Design: Fibers

* <u>Fibers</u>:

> Wave Length Shifting fibers (WLS):

KURARAY Y11: - good attenuation length (3.5-4m),

- good radiation hardness : <30% loss of light output after a 693 krad irradiation.

Recovery: few percents after 10 days
(M.J. Varanda et al. / NIM in Phys. Res. A 453 (2000) 255}258)

Clear Fibers: KURARAY clear PS, Super Eska..., options under study.

Calorimeter Design: Connectors

Option 1:

One to one WLS/clear fiber connector, used in previous experiments (LHCb, Minos)

Calorimeter Design: Connectors

♦ Option 2:

Thermal fusion: splice the WLS and clear fiber.

Giorgio Apollinari et al NIM in Phys. Research. A311 (1992) 5211-528

* <u>Option 3:</u>

Glue the WLS fibers to a lucite disk coupled to a lucite Rod with optical grease or Si gel "cookie". Would reduce the cost significantly

Need more R&D to decide what is the best option.

Hexagon Layout Simulation

Energy weighted position resolution is about the same as the square layout one: ~1cm

Background Simulation

- The radiation dose for scintillators is 100krad~2Mrad, material dependent.
- Doses on the fibers are similar to the doses on scintillator tiles (both are plastic based).
- Dose = (fraction energy deposition for each layer) *(energy flux)
- (energy flux) is generated by using GEMC and Babar model.
- (fraction energy deposition) is calculated using GEANT 4 simulation for each layer and different incoming particle kinematic energy.

Background Simulation

* The first 10 layers of scintillator have most of the radiation dose. Dominated by γ.

- Not much safety margin to radiation limit for some scintillator. Need to use radiation hard material.
- Can add a front shielding of 1~2mm lead (equivalent to 2~3 layers) to reduce the radiation in the first few layers.
- ***** GEMC background model is being improved.

Budget Estimate

Experiment	Angle (degree)	Radius (cm)	Area(m ²)	Number of modules	Module cost (M\$)	Fiber Extension (M\$)	PMT+ support (M\$)	Total cost
PVDIS (forward angle)	22-35	110-258	~10	1000? ~Baffle design	1 5	0	0.6	2.1
SIDIS (forward angle)	9-15	107-202	11	908	1.5	U		
SIDIS (large angle)	17-24	82-141	5	492	0.8	0.3(?)	0.3	1.4

- Support structure: 0.2M\$ (?)
- Iox10cm Shashlyk module costs about \$1~1.5K each
- PVDIS : factor 0.5 reduction due to only covers ~half of azimuthal angle
- Rearrangement of modules between PVDIS & SIDIS large angle calorimeters

TEST of the COMPASS modules

***** To gain direct experience with the modules.

- To help parameterizing the light sampling for WSL fibers and anchor the simulation.
- To study the position resolution at different incoming angles.
- We will borrow 30(5x6) COMPASS module used for TPE@CLAS, but still need PMT, base and electronics.

COMPASS modules used for TPE@CLAS

Beam Test Plan

Sefore the holiday, setup and bench test with cosmic ray for calibration

After the holiday, beam test in HallA

- ➢ gain balance
- Sampling fraction
- energy resolution
- ➤ Timing
- > position resolution with angles

Conclusion

***** Square Layout preferred over hexagon and ring sector

- Need more R&D on the WLS/clear fibers connection (connectors, fusion, bundle...)
- ***** Background simulation is ongoing
- Budget: \$2.1 M for PVDIS + SIDIS large angle
 \$1.4 M for SIDIS forward angle
- Plan for a beam test of the COMPASS modules

Backup Slides

REQUIREMENTS

Electron-hadron separation: > 100:1 pion rejection in electron sample > Energy resolution: σ(E)/E ~ 6%/√E

Provide shower Position:

 $\succ \sigma$ ~1cm, for tracking initial seed / suppress background

Time response:

 σ <~ few hundreds ps, provide trigger/identify beam bunch (TOF PID)

Calorimeter Design: Flexibility

- Screat design adaptability to match the experimental needs.
- Two experienced providers contacted:
 - > IHEP at Protvino for design & production
 - > INR at Trozic for design & UNIPLAST for production

Experiment	COMPASS	PANDA	ΚΙΡΙΟ
Pb Thick/ Layer (mm)	0.8	0.3	0.28
Sci Thick/ Layer (mm)	1.5	1.5	1.5
Energy Res. a/sqrt(E)	6.5%	~3%	~3%
Rad. Length, X ₀ (mm)	17.5	34	35
Total Rad. Length (X ₀)	22.5	20	16
Moliere radius (mm)	36	59	60
Typical Detecting Energy	10 ^{1~} 10 ² GeV?	<10GeV	<1GeV
Trans. Size (cm)	~4x4	11x11	11x11
Active depth(cm)	400	680	555

Calorimeter Design: Lead/Sci Ratio

Tuning of the ratio performed with a dedicated Geant 4 simulation.
 Can reach a pion rejection factor of 100/1 with Pb thick. = 0.6 mm /layer

Range of interest: 3~7 GeV

Compare of calorimeter types

- A. Shashlik calorimeter
- B. SciFi calorimeter Pb
- C. SciFi calorimeter Fe
 - Combined with end cap

Compare option A & B

Shashlyk and SciFi-Pb

- Similarity
 - Pb-scintillator based sampling calorimeter
 - Similar in resolution and radiation hardness
 - Both fit the need of SoLID
- Choice : Shashlyk
 - Easier to read out light:
 Photon collection area 100 times smaller than SciFi
 - Matured production

Compare A & C for the forward Calo. The choice - Shashlik

Reason of choosing Shashlik over Scifi/Fe in endcup

- Shashlik is cheaper.
 - It's production module cost cheaper or similar to SciFi fiber cost alone.
- Shashlik is more mature.
 - SciFi/Fe needs R&D
- Shashlik is easier.
 - several suppliers with good experience are available.