SoLID Simulation

Zhiwen Zhao (UVa)

SoLID Jlab Physics Division Brainstorming Session 2012/01/06

Outline

• History

- SoLID GEMC simulation framework
- Simulation study
 - Choosing Magnet
 - PVDIS Baffle Design
 - EM background
 - Neutron background

• Summary

History

- Comgeant, Geant3 based simulation program.
- geometry/sensitivity/digitization/field as input files and detached from main code, run different settings without recompilation.
- Successfully used for PVDIS and SIDIS proposals.
- As Geant3 development has stopped, we want to move on from Geant3, Fortran based framework to Geant4, C++ based framework for the next 10 years of design, running and analysis.

GEMC (GEant4 MonteCarlo)

Used by CLAS12

- C++ program that simulates particles through matter using the Geant4
- Detector information are stored in mysql database. configuration changes are immediately available to users without need of recompiling the code.
- Hit process factory: associate detectors with external digitization routines at run time.
- perl script I/O to database, no need to know C++ or Geant4 to build detector and run the simulation.

GEMC interface

Batch mode

Various GEMC Options:

- Control
- General
- ✦ Generator
- ✦ Luminosity
- ♦ Mysql
- ♦ Output
- Physics
- ✦ Verbosity

Magnet/coil/yoke

Target/Beam line

SIDIS with BaBar Magnet

GEM

EC, large angle

Collimator

Cherenkov, light gas

SIDIS with BaBar Magnet

SIDIS with BaBar Magnet

Cherenkov, heavy gas

MRPC (Multigap Resistive Plate Chambers)

EC, forward angle

SIDIS with BaBar Magnet 3D Geant4 2D Geant3

SIDIS with BaBar Magnet 3D Geant4 2D Geant3

PVDIS with BaBar Magnet3D Geant42D Geant3

400 Z, cm

PVDIS with BaBar Magnet3D Geant42D Geant3

SoLID Simulation Framework (GEMC)

gemc.jlab.org

- Geant4, C++, Qt, OpenGL
- geometry/sensitivity/digitization/field in mysql databases (soliddb.jlab.org)
- Customized hit processing for various detectors.
- Unified individual detector simulation and the whole SoLID simulation.
- It can be used for other projects.

MC\PRODUCTION\DATABASE_IO\BALLA12\SOLID\FIELD\CLEOV3\CLEOV3.AM 4-06-2011 16:30:10

C:\Users\reimer\Documents\JLab\12_cevisours porsion\ZEUSV1.AK

Magnet Comparison

	BaBar	CLEO	ZEUS	CDF	Glue-X		
					Old SLAC	New	Ideal
Cryostat Inner Radius	150 cm	150 cm	86 cm	150 cm	90 cm		100 cm
Length	345 cm	350cm	245cm	500 cm	350 cm		250 cm
Central Field	1.49T	1.5T	1.8T	1.47T	2 T		1.5T
Flux Return Iron	Yes	Yes	No	No	No		
Cool Icon	Yes	Yes	Yes	No	No		
Variation in Current density with z?	2x more in end than central	4.2% more in end than central	40% more in end than central	Νο	Yes	Yes	
Available	Probably Not??	Probably	Probably	Probably	One will be available		23

SIDIS Kinematic Coverage@11GeV

Magnet Choice PVDIS FOM is not sensitive to different magnet option.

SIDIS Kinematic Coverage@11GeV favors BaBar/CLEO.

	ZEUS	BaBar/CLEO	CDF	Glue-X	Ideal
X	0.05-0.58	0.05-0.65	0.05- 0.64	0.05-0.64	0.05-0.65
Z	0.3-0.7	0.3-0.7	0.3-0.7	0.3-0.7	0.3-0.7
Q ²	1-6	1-9	1-7.2	1-8	1-9
W	2.3-4.2	2.3-4.4	2.3-4.2	2.3-4.2	2.3-4.3
W	1.6-3.4	1.6-3.5	1.6-3.4	1.6-3.4	1.7-3.5
Ρ _T	0-1.45	0-1.7	0-1.45	0-1.45	0-1.6 ₂₅

CLEO magnet and yoke design in progress

PVDIS Baffle Design

PVDIS Baffle

Reduce background by 50

PVDIS EM Background (on EC, no baffle) red Geant3, black Geant4

For Energy Flux, Geant4 shows ~30% larger than Geant3

Momentum Distribution

Neutron Shielding

Use FLUKA for study

boron polyethylene shielding

Summary

- SoLID simulation framework is successfully built base on GEMC with Geant4 and C++.
- A lot of subsystem design and simulation progresses have been made. More studies are under way.
- In preparation for the director review.

Thanks

- Maurizio Ungaro
 - Paul Reimer
- Seamus Riordan
 - Lorenzo Zana
- Simona Malace
 - Eric Fuchey
 - Yang Zhang
- Eugene Chudakov
 - Xin Qian