Summary of Requirements and Special Considerations

Xin Qian KRL Caltech

SoLID-Spin (SSA + DSA on n)

- We measure asymmetries (a few $10^{-4} \rightarrow$ a few 10^{-2})
- Total statistical precision <10⁻⁵, Systematic: ~ 6% x A

Keys of SoLID:

Large Acceptance + High Luminosity →

- **4-D** mapping of asymmetries
- → Tensor charge, TMDs ...
- → Lattice QCD, QCD Dynamics, Models.

Experimental Side:

Full Azimuthal Angular Coverage

- → Double Cancellation in Asymmetries (both acceptance and luminosity fluctuation)
 - + Fast Spin Flip for SSA
- → Control False Asymmetry

Challenges:

- → Detectors Performance in high luminosity environment (GEM...)
- → Fast DAQ (Hall D Standard, Other Halls)

Requirement of SIDIS

- Kinematics Coverage:
 - 0.05 ~ 0.6 in x (valence)
 - 0.3 ~ 0.7 in z (factorization region)
 - P_T up to ~ 1 GeV (TMD Physics)
 - Fixed target \rightarrow Q² coverage 1-8 GeV² (~ 2 GeV² in \triangle Q² at fixed x)
- Luminoisity:
 - Unpolarized ~ 10³⁷ N/cm²/s
- Polarized ³He Target:
 - ~ 60% higher polarization
 - Fast spin flip (<20 mins)
- Electron PID:
 - <1% Pion contamination (asymmetry point of view)

- Pion PID:
 - <1% Kaons and Protons</p>
 - <1% electron contamination</p>
- Optics of Reconstruction:
 - < a few % in δ P/P.
 - < a few mr in polar angle.</p>
 - < a few 10s mr in azimuthal angle</p>
 - ~ a few cm vertex resolution
 - Similar precision required.
 - A factor of 2-3 better already achieved in MC.
- DAQ:
 - ~ 3kHz Physics Coincidence
 - − ~ 200 kHz Single electron
 - ~ 50 kHz Coincidence

Conceptual Design with BaBar

Special Considerations

Uniformity:

- E.g. Design of Detector Support Structure to minimize holes in acceptance (especially in azimuthal angle)
- Background in Detectors
- Radiation:
 - Design of Detector front end electronics and calorimeter
 - Minimize radiation damage
 - Maximize radiation hardness of design.
- Multiple New Detectors:
 - Need dedicated time to <u>commission</u> detectors and system integration.
 - Multiple/Staged beam tests needed for detector R&D.
 - Detailed Integration Plan.

- Mechanical Design:
 - Compact
 - Detector maintenance
 - Cable layout
 - Switch plan among different configurations:
 - Transverse vs. Longitudinal
 - SIDIS vs. PVDIS
 - Strong Engineering Support
- Procedure to quick establishment of detector performance.
 - Position of Tracking detectors
 - Energy response in Calorimeter
 - Background/Gain in Gas Cerenkov.
 - Physics asymmetry in single hadron, and zero PV will help in this.

Motivation for PVDIS

Standard Model

$$\mathbf{b}(x) = \frac{\sum_{i} C_{2i} Q_{i} f_{i}^{-}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)}$$

Di-quarks in the nucleon (Q² Dependence)

CSV at Quark Level

$$\delta u(x) = u^p(x) - d^n(x)$$

$$\delta d(x) = d^p(x) - u^n(x)$$

$$R_{CSV} = \frac{\delta A_{PV}(x)}{A_{PV}(x)} = 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[\mathbf{a}(x) + Y(y) \mathbf{b}(x) \right]$$

Summary of Requirement

- 0.5% precision over broad kinematics range.
 - Beam Polarimetry (Paschke)
 - Control false asymmetries in PID/Tracking.
- New Cryotarget Design (Chen)
 - Challenges in mechanical engineering.
 - Control of false asymmetry.
- High luminosity 10³⁹ N/cm²/s
 - Sieve to block direct photons
 - Effectively reduce luminosities on detectors.
 - Background in Cerenkov.
 - Radiation dose in Calorimeter.
 - Similar to SIDIS requirement

- Electron PID:
 - − < ~1% Pion contamination</p>
 - Gas Cerenkov + E&MCalorimeter for < 3.0 GeV
 - Calorimeter alone for high Momentum
 - GEM for tracking
- 30 sectors, each employs an independent DAQ system.
 - Simpler design than SIDIS.
 - < 10 kHz per sector</p>
- Require L3 farm and online tracking.
 - Proof-of-principle of tracking was achieved.
 - 2.5 kHz per sector @ 1 CPU @ 3.0 GHz.

Special Considerations

- Q² Determination
 - Elastic scattering Need Mont
 Carlo
 - $-4.4 + 6.6 \, \text{GeV}$?
 - How clean are the peaks?
 - How can they be centered?(not symmetric)
- Sieve Slits (Optics)
 - Run with lower B and B=0
 - Rotate one or more baffles to get straight path
 - Install slit with holes to calibrate angles

- Pile-up and Dead Time
 - Dither Intensity: ~10⁻²
 - Empirically measure all effects.
 - Reduce Acceptance and vary
 Intensity by 20%
 - Correct for density variation
- Calibrate BCM
 - Solid target
 - Linear Luminosity Monitor
- Other considerations similar to that of SIDIS: Mechanical Design

Conceptual Design (I)

Kinematics Coverage:

- Preference of Magnet
- Limited by SoLID geometry
- Data taking at 8.8 GeV for radiative corrections and expand Q² coverage.

Luminoisity:

- Requirement on GEMs, Cerenkov.
- Radiation dose on E&M Calorimeter and front end electronics.
- Requirement on DAQ system.

Polarized ³He Target:

- Achieved performance assumed for this experiment
- Magnetic field shielding design and correction coils are keys for performances.
- Possibly benefits from new techniques developed for earlier 12 GeV experiments.

• Electron PID:

- Combination of E&M calorimeter
 + Gas Cerenkov (shared
 equipments with PVDIS)
- Advantage of coincidence measurement in SIDIS (additional Pion suppression)

Pion PID:

- Gas Cerenkov + E&M Calorimeter to suppress electron.
- TOF (MRPC) at low momentum to suppress kaons/protons
- Heavy Gas Cerenkov to suppress kaons in high momentum.

Conceptual Design (II)

- Optics of Reconstruction:
 - Already demonstrated in MC, 200 um resolution in GEM leads to resolution performance.
 - $\sim 1\%$ in $\delta P/P$
 - < 6 mr in azimuthal angle
 - < 0.5 mr in polar angle
 - ~ 1 cm vertex resolution
- Calibration Plan:
 - 2.2, 4.4 and 6.6 GeV beam
 - Multi-Carbon Foils for Vertex.
 - Elastic Hydrogen for momentum.
 - Sieve Slit for angles.
 - Varying strength of SoLID magnetic field. (e.g. No Field Run + Survey ...)
 - Very experienced team in optics calibration.

- DAQ:
 - JLab customized pipeline technology.
 - Fast Tracking:
 - Demonstrated tracking in expected experimental environment.
 - Already achieved 1 kHz per 3.0 GHz CPU.
 - Plenty of room to improve
 e.g. Multi-thread + Sectors +
 Algorithm Improvement (e.g. GPUs)
- Additional Goals to be studied:
 - Neutral Pion Identification (Limited by E&M calorimeter granularity)
 - Two Hadron SIDIS (multiplicity at high W + acceptance)
 - Complementary Transversity Measurement

<10% d quark tensor charge Collins Effect

Example projections of Neutron A_{UL} moments, 1/48 bins in z vs. Q^2 .

50 days @ 11 GeV + 22 days @ 8.8 GeV (Coverage + RC) + 10 days on H/D (Dilution, FSI, Mechanism) + 8 days on calibration of new device + 35 days with longitudinal target spin

Sys.: 0.1% (abs.) + \sim 6% (rel.) + Nuclear Effect/FSI

These data will provide ultimate precision mapping of Neutron SSA/DSA in the valence region at low Q²!