Update on SoLID Cherenkov Detectors

S. Malace, E. Fuchey, H. Gao, Z.-E. Meziani Duke/Temple U.

SIDIS Cherenkov Detectors

The pion Cherenkov

No significant design changes: $C_4F_8O + 30$ spherical mirrors (one piece per sector) + straight cones + field resistant maPMTs in 3 by 3 arrays

→ Mirrors: Carbon Fiber Reinforced Polymer (CFRP), sent request for quote to Composite Mirror Applications (CMA)

→ Cones: switched to straight cones with no significant impact on the collection efficiency (cheaper than Winston cones)

The electron Cherenkov

No significant design changes, 2 options for photon detectors: GEMs+CsI or maPMTs

 \rightarrow GEMs+CsI: CF₄ + 30 large spherical mirrors (one piece per sector)

• Mirrors: CFRP not an option (absorbs and retains water); actively searching for a manufacturer that could cut large glass mirrors; coating could be done by Tom Hemmick (SBU) or maybe CMA

→ maPMT: CO_2 + 30 CFRP spherical mirrors (in 2 pieces of different curvature per sector) + cones + field resistant maPMTs in 2 by 2 arrays

PVDIS Electron Cherenkov Detector

Option 1

 \rightarrow GEMs+CsI: common detector with SIDIS

Option 2

→ maPMT: $C_4F_8O + 30$ spherical mirrors (2 pieces of different curvature per sector) + cones + field resistant maPMTs in 3 by 3 arrays

 gas at sub-atmospheric pressure to push the pion threshold from 2.7 GeV to 3 GeV

Miscellaneous

→Phase 1 of hardware tests completed: background test of GEM+CsI and of maPMT & 5" PMT during the g₂^p commissioning run in December 2011; data analysis underway

Thanks to Brad Sawatzky for his help and guidance with the PMT test

 \rightarrow Phase 2: signal test of GEM + CsI coming up in Spring 2012

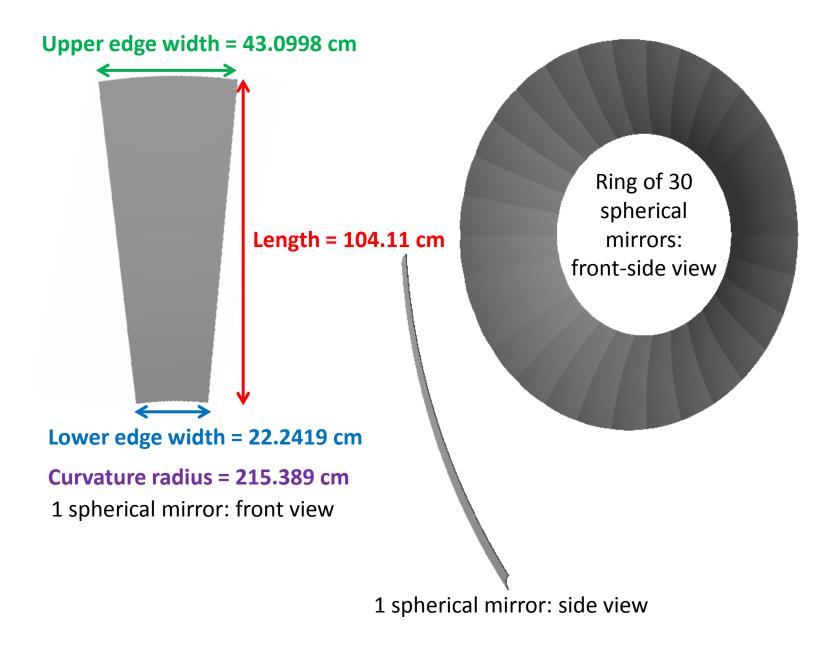
Backup

Mirror Coating with **Big Mac**

Slide from Tom Hemmick

- Big Mac (8' diameter, 6' tall) can likely make excellent LARGE mirrors.
- BNL can likely verify quality.
- SIGNIFICANT money savings for SoLID possible.
- Need to make contact Lipski \rightarrow CERN

CFRP Mirrors: CMA


 \rightarrow Composite Mirror Applications: based in Tucson, Az

CMA was involved in producing mirrors for: SOS, Hall C JLab Hermes RICH, DESY LHCb RICH 1, CERN Alpha Magnetic Spectrometer AMS-02 on board the ISS ALICE (demo mirrors), CERN

Capability of applying optical coating (Al + MgF₂,...) on large-size mirrors: 72" by 144" coating chamber

CFRP advantages: radiation hard, fluorocarbon compatibility, non-magnetic, light-weight, good rigidity, relatively cheap compared to other materials that would offer similar advantages, no safety implications

SIDIS Pion Cherenkov Mirrors: Example

