PVDIS at 11 GeV with SoLLID



PV Electron Scattering

Continuous interplay between probing hadron structure and electroweak
physics
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Parity-violating electron scattering has become a precision tool

o ® Physics beyond Standard Model
o ® Strange quark form factors
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Indirect Clues to TeV Physics

Hlectroweak Interactions at scales much lower than the W/Z mass

Many theories predict new forces that
E /\/» disappeared when the universe cooled
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Dynamics involving
particles with m > A
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higher dimensional operators can be

Heavy Z’ s and neutrinos, technicolor, systematically classified
compositeness, extra dimensions, SUSY... *flavor changing as well as flavor diagonal
°charged current as well as neutral current

Consider f,f, — flfz Or%]qﬁ — e
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new contact interactions
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Neutral Currents at Low Energy
Colliders AND Fixed Target

One goal of neutral current measurements at low energy AND colliders:
Access A > 10 TeV for as many different flavor & L,R combinations as

possible ,
Colliders access scales A s ~ 10 TeV - L,R combinations accessed are
Tevatron, LEP, SLC, LEP200, HERA mostly parity-conserving
2
Z boson production accessed some Oon resonance: ‘ 2 o Anew
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Low Energy: New Physics/ Weak-Electromagnetic Interference
® opposite parity transitions in heavy atoms
® Spin-dependent electron scattering
Az Apew
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Electromagnetic amplitude
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well as any new physics |
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The Weak Mixing Angle

Running of Ow : Bookkeeping to check consistency of various measurements
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195Cs Atomic Parity Violation (APV)

NuTeV result requires careful consideration of nuclear corrections
Current/Future PV Electron Scattering Measurements at JLab

e-q measurements: QWeak (elastic e-p) and SOLID (DIS)

Improve on E158 by a factor of 5 (MOLLER)



e-q coupling constants

4 phenomenological couplings: V, A & u, d combinations
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Caq s involve axial hadronic currents:
large theoretical uncertainties when accessed via elastic scattering



PV Deep Inelastic Scattering

off the simplest isoscalar nucleus and at high Bjorken x
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SOLID Goal on Couplings

Measure Apy for e-*H DIS to 0.6% fractional error (stat + syst + theory) at high x, y
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Coq s largely unconstrained
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Red ellipses are PDG fits

This box matches the/scale of the Ciq plot

Blue bands represent expected data: Qweak (left) and PV-DIS-6GeV (right)

Green bands are the proposed measurement of SOLID

unique TeV-scale sensitivity




New Physics Examples

Leptophobic Z’

*Virtually all GUT models predict new Z’s

] HC reach ~ 5 TeV, but....

e[ittle sensitivity if Z’ doesnt couple to leptons

o] eptophobic Z~ as light as 120 GeV could have escaped detection

Since electron vertex must be vector, the Z' cannot
couple to the Ciq s if there is no electron coupling:

can only affect C2q’s
e q

SOLID can improve sensitivity:
100-200 GeV range

arXiv:1203.1102v1
Buckley and Ramsey-Musolf




Other New Physics Examples

MSSM sensitivity if light super-partners, large tanf3

- SOLID

B or L violation
parity violatign)

MSSA g
e SUSY loops Does Supersymmetry provide a

X

Ramsey-Musolf
and Su, Phys. +
Rep. 456 (2008) X
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Assume LHC sees
1.2 TeV Z’

Extra Z’s can have
Different couplings
(Jens Erler)

candidate for dark matter?

Z7
' -Band/orL need not be
conserved: neutralino decay
" " :Depending on size and sign of
X deviation: could lose appeal as a

— f dark matter candidate
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SOLID Apparatus

Moderate running times
Large Acceptance
High Luminosity on LH2 & LD2

Better than 1% errors for small bins

Kinematics:
Large Q? coverage
x-range 0.25-0.75
W2 >4 GeV?

Requirements:
Solenoid contains low energy backgrounds (Mgller, pions, etc)
Baffling to cut backgrounds: significant engineering

Trajectories measured after baffles

Fast tracking—GEM, particle ID, calorimetry, and pipeline electronics
Precision polarimetry (0.4%) Compton and atomic hydrogen Moller



SOLID Apparatus Overview

Solenoidal detector tor PVDIS at high x
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®20°-35° E ~1.5-5GeV &p/p~ 2%
e some regions 10° s of kHz/mm?2, Pion rejection with Cherenkov + segmented calorimeter
e Several large solenoids would work (Zeus, Babar): present design focuses on CLEO-II



22<6<35°

Xg> 0.55
W 4 GeV?
Q> 6 GeV?

Rate= 35.8 kHz
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Program of Measurements

Requires 12 GeV upgrade of JLab and a large superconducting solenoid

Requirements

High Luminosity with E > 10 GeV

Large scattering angles (for high x & y)

Better than 1% errors for small bins
x-range 0.25-0.75

W2 > 4 GeV?

Q?’ range a factor of 2 for each x
(Except at very high x)

Moderate running times

A= A[l + Bur
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If no CSV, HT, quark sea or nuclear effects, ALL Q?, x bins
should give the same answer within statistics modulo kinematic factors!

ij
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Strategy: sub-1% precision over broad kinematic range: sensitive Standard Model test and
detailed study of hadronic structure contributions
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Charge Symmetry Violation

We already know CSV exists:

" u-d mass difference  dm =mg-m, = 4 MeV
6M = M,-M,= 1.3 MeV

= electromagnetic effects

* Direct sensitivity to parton-level CSV

* Important implications for PDF s

* Could be partial explanation of the
NuTeV anomaly
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Significant effects are predicted at high x



EMC ratios

Nuclear Medium Modification
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Cloet, Bentz, Thomas, arXiv 0901.3559

® They propose that a neutron or proton excess in nuclei leads to an
isovector-vector mean field dominated by p exchange
e shifts quark distributions: “apparent” CSV violation

® |sovector EMC effect: explain 2/3 of NuTeV anomaly

RY ~ dup(z)+da(z) & R’YZ N 1.16 ug(z)+da(x)

4 uo(z)+do(x) 1.16 ug(x)+do(x)
1.2 ] . : : .
; Carbon (rp, = 1) / 1.1 3 Lead (7, = 82/126)
¢
I § 0.9
K @)
} E 0.8
' 0.7
i ., R o |
- gyz Q? = 5.0GeV? 0.6 R'Z Q* = 5.0GeV?
0 0.2 | 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8



Apparent CSV 1n Nuclei

® Suppose one completes a ?H Apy measurement, then repeat with 2°8Pb

- The ratio of ratios (heavy nucleus vs deuterium) as a function of x should show a
measurable effect if model is correct

- Measuring the EMC effect along a different isospin axis
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e Would be a smoking gun demonstration of nuclear medium
modification of quark distributions

e Another classic example of interplay between EW and QCD



A Special HT Effect

The observation of Higher Twist in PV-DIS would be exciting direct evidence for diquarks

following the approach of g GY = h GY > ]
Bjorken, PRD 18, 3239 (78), V,=VWyu-dyd )k::> S, =Wy u+dyd
Wolfenstein, NPB146, 477 (78)

(V) =1, [(DIV* ()" (0)| D) d*x

Isospin decomposition
before using PDF’ s

VA
_G,Q’ 5 (VV) —(8S5) ! 1
A = [a(x) + £ (y)b(x)] (VV) + (SS) a(x) F7 x1—0.39
Higher-Twist valence quark-quark correlation Zero in quark-parton model

(V)= (SS)=((V =)V +8)) < 1,,, | <D | ;(x)'y'“u(x)g(O)y"d(0)>e,.q>«d4x

- — (c) type diagram is the only operator
I ! that can contribute to a(x) higher
(a) (b) twist: theoretically very interesting!

- (1112203 -

D oL contributions cancel

— T I~
() Castorina & Mulders, ‘84 Use v data for small b(x) term.




a, Term and Neutrino's

o’ —g” These hadronic corrections can be

2
1-d-y) 4, (0" )« — —  obtained from charged-current

1-y-y*/2(1+R) o +0’ neutrino scattering data
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FIGURE 2. Left figure: the 1¢ error bands for the high-twist terms in the isospin-symmetric combina-
tions of different structure functions (solid lines: 7, dashes: Frr, dots: F) for charged leptons. Right figure:
corresponding 1 ¢ bands for neutrino scattering off an isoscalar target (upper panel: F,, lower panel: x/3).
The predictions for ; from charged leptons rescaled by the corresponding leading twist terms are also
shown for comparison.



Error Budget (%)

Statistics 0.3
Polarimetry 0.4
Q2 0.2
Radiative Corrections 0.3
Total 0.6




Physics with Hydrogen

SU6): dlu~1/2

Valence Quark:
Perturbative QCD: d/u~1/5

d(x)/u(x) as x—1

d/u~0

Longstanding issue in proton structure
PV-DIS off the proton (hydrogen target) i i |
Q"= 10 GeV* |
2 a ;‘
Apy \f a[a(x)+f (Nb(x)] 08 [ & == Qc fit |
B CTEQ4M /
R ——- CTEQ4M (modified) /
aP ( x) ~ u(x) - ld(x) 0.6 v T e A ey
u(x)+0.25d (x) '

Deuteron analysis has large
nuclear corrections (Yellow)

-

fitted ronge

Apy for the proton has no
such corrections

0 =

The challenge is to get statistical and systematzc errors ~ 2&0



Radiative Corrections

* Need coherent theory of all electromagnetic
and elecroweak corrections at finite Q2.

» Radiative correction theory group is being
assembled.

* Preliminary estimates have been made.

| Cross section ratio EL/DIS at Beam energy 11 | A/ ELASTIC
| Cross section ratio A/EL at Beam energy 11.0 GeV I
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Running time

Strategy: sub-1% precision over broad kinematic range for sensitive
Standard Model test and detailed study of hadronic structure contributions

Untangle Physics with fit:

° [Error bar oA/A (%) |
" shown at center of bins A= All+ B e
105N Qz, X P61 P83 (1—x)3Q2 N
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PVDIS vs SIDIS

X viewer-0 (OpenGLImmediateQt)

Can you find six differences between these panels?
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Summary o
s ¥ = ¥.0.01
5 015 S
Measurements of Parity Violation in Deep & -0.02 }

Inelastic Scattering contain a wealth of 0.14
information about:

— The Standard Model

— Charge Symmetry (CSV) o

— Higher Twist (HT) ;

* MRST global it~ A
X 12 GeV
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For the complete picture—to unravel the

full richness of the physics reach of this . ‘ : 84, o o0%cCL
process a dedicated—a large-acceptance SSUSESSSUII A
spectrometer is needed. ‘HIR N
Bj
SoLID will also provide critical nuclear 0
structure test (NuTeV sin?0,,) 1ol
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B 58
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Large additional program of SI-DIS I 0,5,:;80.520-65
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SOLID-Spin
Double-Polarized Semi-Inclusive DIS on *He & 'H at 11 GeV
' = *E12-10-006: Single Spin Asymmetry on
Transverse 3He @ 90 days

*£12-11-007: Single and Double Spin
Asymmetry on 3He @ 35 days

\ *PR12-11-108: Single and Double Spin
Tcans Asymmetries on Transverse Proton
(conditionally approved)

Sivers " @z =0.55 White paper: Eur. Phys. J. Plus (2011) 126:2

] @‘ i
0.02} He
0.047 T )
I R Key of SoLID-Spin program: P | n ‘
.08 Nl . ™| |Large Acceptance g5 o
0. e “_ | |+ High Luminosity ‘

-  4-D mapping of asymmetries P

> O 2 05 o'i - Tensor charge, TMDs ...
- Lattice QCD, QCD Dynamics, Models.

TE+



SO S STEUHTOR DaCRt OUTE ey o
LID Status rgmeatay

i RS 1e-06

Strong collaboration being formed J \ _ l -
~ 130 collaborators, ~ 35 institutions ar *JML/ .o I
Parity and DIS expertise wo w0 w0 B
Significant international participation: Italy, Germany, China
~ 5 Postdoc FTEs now focused on simulation and R&D

Significant hardware R&D potential
GEMs, Shashlyk, pipeline electronics, collimator engineering....

Timeline
Would run in Hall A on and off between 2016 and 2022

JLab 1s currently negotiating with Cornell to move CLEOII magnet ~
2014

R&D and Design ~ 2-3 years

Funding strategies (total cost 20-25 M$)
unlikely to be a one CD-funded project
must consist of several sub-projects
JLab wants to single out hardware that might be of multi-purpose use




SolL.ID and extra Z’s

68% exclusion limits
MZ, =1.2 TeV

B SOLID (0.6%)
 Hl MOLLER (2.3%)

B Qweak (4%)
B APV
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