SoLID Cryogenic Target Update

D Meekins and C Keith 3-22-2013

Cryotarget

- Completely New Design
 - Build on designs of previous systems

Cell Design

- Bulk boiling and density fluctuations need to be considered
- Axial flow tube cell
- Acceptance will drive design elements
- High magnetic field
 - H2,D2 must be unpolarized
 - Material selection
 - Major components must be outside field
- Refrigerator will have impact on design

Conceptual Design

Outside the field

- 1. Heat Exchanger
- 2. Cryostat
- 3. Pump
- 4. Lifter (30" of travel)
- 5. Piping

Inside field

- 1. **Cell**
- 2. Solid targets
- 3. Piping
- 4. Instrumentation
- 5. Support system

Power

• Cooling Requirements

- 800+ W of beam heat load
- 250+ W of overhead
 - Pump heating and efficiency/friction losses
 - Heater control
 - Transfer line losses

• Refrigerators

- CHL has been removed from CRYO commitment to Halls
- ESR I
 - ~1 kW (slightly more at 20K)
- ESR II
 - More than adequate for this target

Cell Design

- Acceptance will drive much of geometry
 - Max angle of 35°
 - Qweak max angle of ~12°
- Modest boiling and density fluctuation requirements
- Requires careful selection of materials
- Must meet requirements of 10 CFR 851
 - Either meets Code and/or equivalent measures
 - receives extensive testing and review
- Requires close collaboration with Hall A designers and Experiment

Polarization of D2

- D2 will polarize in high B field at 20K
 D2 has a very long relaxation time T₁>1 hr
- Assuming Qweak style pump (15 l/s)
 - Dwell time in high field for one circuit is < 3 sec
 - Dwell time outside the field \sim 10 sec.
- Total polarization will be some fraction of 100 ppm
- Beam will disassociate D2
 - Enhance the polarization of D2
 - We don't know how to quantify this
- Measurement of D2 polarization will be an extensive project

Scattering chamber

- Must accommodate the motion of the target stack
- Can be optimized for acceptance and window thickness
 - Positioning of the downstream window close to the cell exit
 - Design a strut supported scattering chamber exit window
 - minimizes the impact on acceptance
 - minimizes the required thickness of the exit window

Conclusions

- Major design and engineering effort
 - Design requirements must be determined in timely fashion
 - Cost of this effort is non trivial
- Polarization of D2 may be an issue
 - Measurement of this polarization will be challenging
- Refrigeration for this target will most likely exceed current ESR capacity
- This system will be significantly larger than the standard pivot target
 - Installation will be complicated because of geometry

SoLID Polarized Proton Target

- Existing JLab targets are optimized for longitudinal running
 - Magnet opening angle parallel to field: ± 55°
 - Opening angle perpendicular to field: ±19°
- SoLID experiments focus on transverse polarization and require opening angle ≥ ± 25°

Recommendation:

Design new 5T magnet and integrate into existing JLab system

SoLID Polarized Proton Target

- Oxford Instruments Design Study (Nov. 2012):
 - Initiated by Don Crabb, UVa
 - Describes a high homogeneity, 5 tesla magnet w/ ± 25° split
 - Helmholtz configuration of 14 superconducting coils in series
 - Operating current for 5 tesla is 106 amps
 - Design, dimensions, and current are similar to Hall B & C polarized target magnets
 - Detailed ANSYS study was performed of forces acting on the coils

Conclusion

"Analysis indicates that 5 tesla with ±25 split access is realisable..." Design Report rfq 13241, Oxford Instruments Nanotechnology Tools LTD, Nov.12, 2012

SoLID Polarized Proton Target

Top view, 1/8th of one set of Helmholtz coils. Magnetic field is left-to-right.

Design Report rfq 13241, Oxford Instruments Nanotechnology Tools LTD, Nov.12, 2012

- Used multiple times at SLAC and JLab Hall C
- Last used in Hall A in 2012 (g2p/Gep)
- Replace original magnet (inoperable) with Hall B magnet
- Major upgrade to nearly every system component
 - New magnet *suspension* system
 - New magnet *rotation* system
 - New 1 K refrigerator
 - New/refurbished/rebuilt pumping system
 - New ASME-compliant quench relief
 - New sample insert (2 NH₃ + 3 background samples)
 - New insert motion mechanism
 - New cryo lines

- Performance during g2p/Gep was exceptional
 - Highly reliable
 - High average polarization

- G2p/GeP: Hall B Magnet was utilized in place of original, inoperable magnet
- Suspension system used for g2p/Gep will simplify integration of the SoLID transverse magnet

Suspension/Alignment bracket

ConFlat flanges replace indium seals for LHe service

5 T magnet from Hall B polarized target