
Solid DAQ August 19th 2013 Alexandre Camsonne

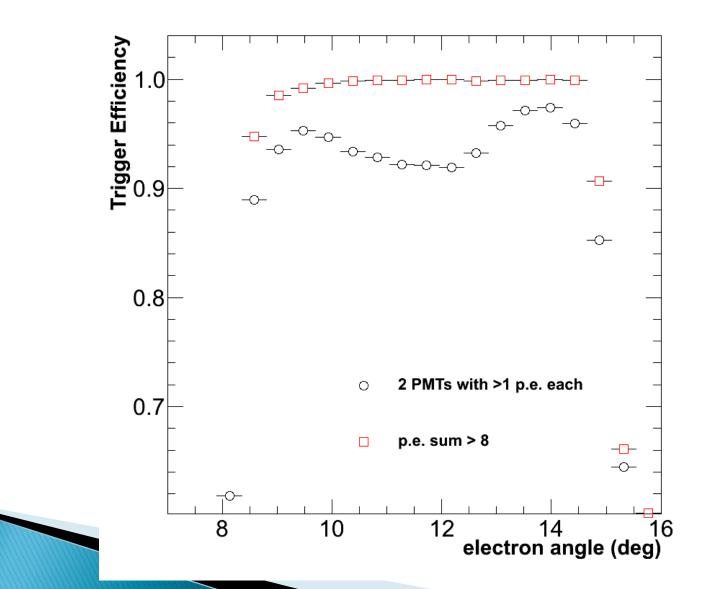
Outline

Calorimeter

- Trigger
- readout
- Cerenkov trigger
 - Rates
 - Design
 - Efficiency
- PVDIS
 - Trigger and rates
 - GEM event size
- SIDIS update
 - Pion trigger
 - Event size
 - Readout mode
- L3 farm
 - Requirement
 - Hall D
- Updated cost and man power
- Conclusion

Calorimeter triggerHPS scheme

Calorimeter FADC readout


- Individual channel threshold sensitive to background and can reduce efficiency and resolution
- Solution : generate a 64 bit pattern to trigger the FADC of each crate and use trigger path to send to FADC

Development of new firmware : add 1 FTE/year electronics group

Cerenkov trigger

- Coincidence between two PMTs at 2 pe
- Sum of 9 PMTs (better efficiency) might be noisier
- Send information of one sector to the two neighboring sectors to compute sum

Cerenkov trigger efficiency

Cerenkov rates

Last simulation around 3 MHz

 Assuming 30 ns coincidence window : 60KHz*3MHz*30 ns = 5.4 KHz accidentals

Need to evaluate efficiency at interface as function of phi

PVDIS trigger rates

- Coincidence cerenkov and Calorimeter
- ▶ 5 KHz physics rate ? + 6 KHz accidentals
- 11 KHz trigger rate per sector

GEM event occupancy and size

Sector	Rate	XY	Bytes	
0	23	46	184	
1	12	24	96	
2	10	20	80	
3	9	18	72	
Total hits /				
sector	54		432	
Data rate /				
sector	60000		25920000	
Data rate (
sector Mb/s)			25.92	
Total detector	1620		777.6	
Occupancy				
detector	0.011489362			

- Rates with deconvolution 1 sample readout
- Need to check it works well
- 800 MB 3 sample without deconvolution
- Only Geant4 pion background (do we need to add physics pions too ?)

PVDIS FADC event size

- Need full simulation with digitization
- Assume two clusters maximum, cerenkov fires all the time
- For 10 samples :

event size = 12 + n * 4/2 with n number of

channels

Detector	Nb fired	Size (bytes)	
Calorimeter	14	560	
Preshower	14	560	
Cerenkov	9	360	
Total		1480 bytes	

PVDIS data rates

- VME Backplane limitation : 100 MB/s
- Max rate : 65 KHz
- At 30 KHz :
 - \circ 45 MB/s for FADC
 - 13 MB/s from GEM
 - 58 MB/s data rate
 - Total 30 sectors : 1740 MB/s need reduction by factor of 7 by L3

SIDIS event size

- Need to be updated
- Around 2.5 Kbytes
- ▶ 500 MB/s with 60 crates
- L3 reduction by factor of 2

SIDIS update

- Jin's study of background
 - Waveform not needed for calorimeter
 - Assume full waveform for scintillator
 - Pion trigger at MIP using clustering algorithm : has good efficiency : can use cluster readout, no issue with background
- Assume 1 sample GEM readout and only integral readout for calorimeter and evaluate feasibility single trigger (200 KHz)

Tape cost

Current price DLO5 : 75 \$ for 1.5 TB DLO 6 : 2.5 TB per tape

		Days	Data rate	Seconds	Total data TB	Double	DLO5 in \$	DLO6 in \$
E12-11-108	Pol proton	120	250	10368000	2592	5184	259200	155520
E12-12-006	J/Psi	60	250	5184000	1296	2592	129600	77760
E12-10-006	Transv. Pol. 3He	90	250	7776000	1944	3888	194400	116640
E12-11-007	Long. Pol. 3 He	35	250	3024000	756	1512	75600	45360
E12-10-007	PVDIS	169	250	14601600	3650.4	7300.8	365040	219024
	Total	474		40953600	10238.4	20476.8	1,023,840	614,304
Actual days	Actual years		Time in s			Per year	394,200	236,520
948	2.60	474	40953600					

Not major limiting factor

L3 Farm

- Hall D performance
 - 27 Hz with tracking (741 cores for 20 KHz)
 - 77 Hz without tracking (260 cores for 20 KHz)
 - For 7000 strip and 2800 calorimeter channels
- 128 cores server about 20 K\$, price linear with rate

Rate (KHz)	CPU With tracking	Price sector	Total price	CPU No tracking	Price	Total price
10	500	80 K\$	2.4 M\$	130	20 K\$	0.6 K\$
30	1500	240 K\$	7.2 M\$	390	60 K\$	1.8 M\$

Can afford non tracking method need to check non tracking

L3 Farm

Data reduction strategy

- Region of interest
- Pulse quality
- Clustering
- Tracking
- Need to evaluate algorithm speeds
- Seems can only do non tracking, need to evaluate if sufficient

Updated budget (to be checked)

- Same number of preshower as shower
- Added 60 additionnal FADC channel for SIDIS
- 2 crates : 1 for APV and 1 for FADC
- > 3.1 M\$, need to check new data rates
- 1.8 M\$ L3 at 30 KHz 0.6 M\$ at 10 KHz

Things needed for report

Report

- Occupancy in calorimeter
- Efficiency of pion trigger
- Finalize rates PVDIS
- Generate trigger rates SIDIS
- Finalize GEM occupancy
- Define L3 algorithm and speed and cost
- Finalize cost

Ideas questions

Add more FADC channels to Cerenkov

 Go with SRS in proposal instead of VME (saves crates)

Things needed for review

- Finalize DAQ location and radiation studies
- Evaluate and test deadtime when transferring waveform
- Full simulation to evaluate effect of background
- Implementation of trigger at small scale to check latency and logic
- Test of L3 speed
- APV25 high rate test readout

Conclusion

- Progress on PVDIS trigger and readout
 - Only readout of cluster allows 60 KHz
 - Coincidence EC and Cerenkov gives only 6 KHz accidentals

SIDIS

- Pion trigger efficiency is good and can use cluster readout
- Need to evaluate effect of background with full simulation
- Need to evaluate L3 performance